A Factorial Identity

Either prove the following statement or find a counterexample. For every positive integer a there is a constant C depending only on a such that for every positive integer n we have

$$
(a n)!\leq C^{n}(n!)^{a}
$$

Solution This is true. Fix a and let $C=a^{a}$. Proof is then by induction on n. The base case $n=1$ is done by observing $a!=a(a-1)(a-2) \cdots 2 \cdot 1 \leq$ $a \cdot a \cdot a \cdots a \cdot a=a^{a}$. Now assume we have the result for n and we with to show it for $n+1$. Note that

$$
\begin{aligned}
(a(n+1))! & =(a(n+1))(a(n+1)-1)(a(n+1)-2) \cdots(a(n+1)-a) \cdots 2 \cdot 1 \\
& =(a n+a)(a n+a-1)(a n+a-2) \cdots(a n+1)(a n)!
\end{aligned}
$$

From induction we have $(a n)!\leq C^{n}(n!)^{a}$. Looking at the rest of the right hand side above, we have $(a n+a-i) \leq(a n+a)$ for all $i<a$. Thus

$$
(a n+a)(a n+a-1)(a n+a-2) \cdots(a n+1) \leq(a n+a)^{a}
$$

Combining the two inequalities then gives

$$
(a(n+1))!\leq(a n+a)^{a} C^{n}(n!)^{a}
$$

Applying an exponential identity and simplifying

$$
\begin{aligned}
(a(n+1))! & \leq(a n+a)^{a} C^{n}(n!)^{a} \\
& =a^{a}(n+1)^{a} C^{n}(n!)^{a} \\
& =a^{a}\left(a^{a}\right)^{n}((n+1) n!)^{a} \\
& =C^{n+1}((n+1)!)^{a}
\end{aligned}
$$

as desired.

