Integer Requirements

Do there exist integers k, l, i, j, m, n such that the following relations hold?

1. $i m-n=l$
2. $n-m j=l$
3. m does not divide n
4. $\operatorname{gcd}(i-j, k) \neq 1$
5. $\operatorname{gcd}(k, l)=1$

Solution: It is not possible. Adding together (1) and (2) gives $m(i-j)=2 l$, so m divides $2 l$. In fact, we can show m divides l.

Claim. m divides l.
Proof. Suppose not. Then since m divides $2 l$ we must have 2 dividing m. This means we can write $m=2 a$ for some integer a, and so $2 l=m(i-j)=$ $2 a(i-j)$ giving $l=a(i-j)$ which means a divides l. Let $b=\operatorname{gcd}(i-j, k)=$ $\operatorname{gcd}\left(\frac{l}{a}, k\right)$. Then b divides both l and k and is not $1, \operatorname{sog} \operatorname{gcd}(l, k) \geq b>1$. But this contradicts requirement (5). Thus m divides l.

Since m divides l we can write $l=m c$ for some integer c. Using requirement (1) we have $n-m j=l$ which implies $n=l+m j=m c+m j=m(c+j)$, and so m divides n. But that contradicts requirement (3).

Thus these requirements are inconsistent and cannot be satisfied.

