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An Integral Identity

Can you prove the following identity?∫ 1

0

1
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dx =
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n=1

1
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Solution The inside of the integral can be rewritten in terms of the exponential
function 1

xx = x−x = e−x ln x. Using the series representation for ex, we get

e−x ln x =
∞∑

n=0

(−x lnx)n

n!

as a series representation for x−x. We wish to integrate the series term by term.
The following lemma will be helpful.

Lemma 1. For every natural number n > 0 and k ≥ 0,∫ 1

0

xn (lnx)k dx =
(−1)kk!

(n + 1)k+1

Proof. Chose n, arbitrarily. Proof is by induction on k. If k = 0 then∫ 1

0

xn dx =
1

n + 1
.

Now suppose the identity holds for all k′ < k. Using integration by parts,∫ 1

0

xn (lnx)k
dx =

xn+1(lnx)k

n + 1
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− k

n + 1

∫ 1

0

xn(lnx)k−1 dx

The middle term evaluates to 0, so using the induction hypothesis on the right
hand side integral we get the desired equality.∫ 1

0

xn (lnx)k
dx = − k

n + 1

∫ 1

0

xn(lnx)k−1 dx

= − k

n + 1
(−1)k−1(k − 1)!

(n + 1)k

=
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(n + 1)k+1
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To show the initial identity we replace the integrand by its series expansion,
and then integrate term by term, using the identity in the previous lemma to
do the actual integration.∫ 1
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Thanks to John Holmes for the central idea of integrating the series term-
wise.
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