## An Integral Identity

Can you prove the following identity?

$$
\int_{0}^{1} \frac{1}{x^{x}} \mathrm{~d} x=\sum_{n=1}^{\infty} \frac{1}{n^{n}}
$$

Solution The inside of the integral can be rewritten in terms of the exponential function $\frac{1}{x^{x}}=x^{-x}=e^{-x \ln x}$. Using the series representation for $e^{x}$, we get

$$
e^{-x \ln x}=\sum_{n=0}^{\infty} \frac{(-x \ln x)^{n}}{n!}
$$

as a series representation for $x^{-x}$. We wish to integrate the series term by term. The following lemma will be helpful.

Lemma 1. For every natural number $n>0$ and $k \geq 0$,

$$
\int_{0}^{1} x^{n}(\ln x)^{k} \mathrm{~d} x=\frac{(-1)^{k} k!}{(n+1)^{k+1}}
$$

Proof. Chose $n$, arbitrarily. Proof is by induction on $k$. If $k=0$ then

$$
\int_{0}^{1} x^{n} d x=\frac{1}{n+1}
$$

Now suppose the identity holds for all $k^{\prime}<k$. Using integration by parts,

$$
\int_{0}^{1} x^{n}(\ln x)^{k} d x=\left.\frac{x^{n+1}(\ln x)^{k}}{n+1}\right|_{0} ^{1}-\frac{k}{n+1} \int_{0}^{1} x^{n}(\ln x)^{k-1} d x
$$

The middle term evaluates to 0 , so using the induction hypothesis on the right hand side integral we get the desired equality.

$$
\begin{aligned}
\int_{0}^{1} x^{n}(\ln x)^{k} d x & =-\frac{k}{n+1} \int_{0}^{1} x^{n}(\ln x)^{k-1} d x \\
& =-\frac{k}{n+1} \frac{(-1)^{k-1}(k-1)!}{(n+1)^{k}} \\
& =\frac{(-1)^{k} k!}{(n+1)^{k+1}}
\end{aligned}
$$

To show the initial identity we replace the integrand by its series expansion, and then integrate term by term, using the identity in the previous lemma to do the actual integration.

$$
\begin{aligned}
\int_{0}^{1} \frac{1}{x^{x}} d x & =\int_{0}^{1} \sum_{n=0}^{\infty} \frac{(-x \ln x)^{n}}{n!} d x \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \int_{0}^{1} x^{n}(\ln x)^{n} d x \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \frac{(-1)^{n} n!}{(n+1)^{n+1}} \\
& =\sum_{n=0}^{\infty} \frac{1}{(n+1)^{n+1}} \\
& =\sum_{n=1}^{\infty} \frac{1}{n^{n}}
\end{aligned}
$$

Thanks to John Holmes for the central idea of integrating the series termwise.

