Maximum Product

You have n positive real numbers x_{1}, \ldots, x_{n} which sum to k, another positive real number. Consider their product, $x_{1} \cdots x_{n}$. Show the maximum product is achieved precisely when $x_{i}=\frac{k}{n}$ for each $1 \leq i \leq n$. That is to say, $\prod x_{i} \leq\left(\frac{k}{n}\right)^{n}$.

Solution: The problem is about finding the maximum of the function $f\left(x_{1}, \ldots, x_{n}\right)=\prod x_{i}$ given the constraint $\sum x_{i}=k$.

Since each $x_{i}>0$ the function f is always positive so we can instead ask for the maximum of $\log f$. Calculate

$$
\begin{aligned}
\log f\left(x_{1}, \ldots, x_{n}\right) & =\log f\left(x_{1}, \ldots, x_{n-1}, k-\sum_{1}^{n-1} x_{i}\right) \\
& =\log \left[\left(k-\sum_{1}^{n-1} x_{i}\right) \prod_{1}^{n-1} x_{i}\right] \\
& =\log \left(k-\sum_{1}^{n-1} x_{i}\right)+\sum_{1}^{n-1} \log x_{i}
\end{aligned}
$$

For each i from 1 to $n-1$ take the derivative of $\log f$ with respect to x_{i}

$$
\begin{aligned}
\frac{\partial}{\partial x_{i}} \log f\left(x_{1}, \ldots, x_{n}\right) & =\frac{\partial}{\partial x_{i}}\left[\log \left(k-\sum_{1}^{n-1} x_{i}\right)+\sum_{1}^{n-1} \log x_{i}\right] \\
& =-\frac{1}{k-\sum_{1}^{n-1} x_{i}}+\frac{1}{x_{i}} \\
& =\frac{1}{x_{i}}-\frac{1}{x_{n}}
\end{aligned}
$$

Set the derivative equal to zero to find the critical point $x_{i}=x_{n}$. Do this for each i to see the critical point for each x_{i} is achieved precisely when $x_{1}=x_{2}=\cdots=x_{n}$. Since all the variables sum to k we get $x_{i}=\frac{k}{n}$ for $1 \leq i \leq n$ as the point which maximizes f. Thus $f\left(x_{1}, \ldots, x_{n}\right) \leq\left(\frac{k}{n}\right)^{n}$ when $\sum x_{i}=k$.

