March 22, 2007

Maximum Product

You have *n* positive real numbers x_1, \ldots, x_n which sum to *k*, another positive real number. Consider their product, $x_1 \cdots x_n$. Show the maximum product is achieved precisely when $x_i = \frac{k}{n}$ for each $1 \le i \le n$. That is to say, $\prod x_i \le (\frac{k}{n})^n$.

Solution: The problem is about finding the maximum of the function $f(x_1, \ldots, x_n) = \prod x_i$ given the constraint $\sum x_i = k$.

Since each $x_i > 0$ the function f is always positive so we can instead ask for the maximum of $\log f$. Calculate

$$\log f(x_1, \dots, x_n) = \log f(x_1, \dots, x_{n-1}, k - \sum_{i=1}^{n-1} x_i)$$
$$= \log \left[\left(k - \sum_{i=1}^{n-1} x_i \right) \prod_{i=1}^{n-1} x_i \right]$$
$$= \log \left(k - \sum_{i=1}^{n-1} x_i \right) + \sum_{i=1}^{n-1} \log x_i$$

For each *i* from 1 to n - 1 take the derivative of $\log f$ with respect to x_i

$$\frac{\partial}{\partial x_i} \log f(x_1, \dots, x_n) = \frac{\partial}{\partial x_i} \left[\log \left(k - \sum_{1}^{n-1} x_i \right) + \sum_{1}^{n-1} \log x_i \right]$$
$$= -\frac{1}{k - \sum_{1}^{n-1} x_i} + \frac{1}{x_i}$$
$$= \frac{1}{x_i} - \frac{1}{x_n}$$

Set the derivative equal to zero to find the critical point $x_i = x_n$. Do this for each *i* to see the critical point for each x_i is achieved precisely when $x_1 = x_2 = \cdots = x_n$. Since all the variables sum to *k* we get $x_i = \frac{k}{n}$ for $1 \le i \le n$ as the point which maximizes *f*. Thus $f(x_1, \ldots, x_n) \le (\frac{k}{n})^n$ when $\sum x_i = k$.