Splitting Between Two Jars

For some positive integer N there are N red balls and N blue balls, and two jars. All the balls are distributed in some way between the two jars, and then a ball is randomly selected by first choosing a jar at random, and then choosing a ball at random from the jar. How should one distribute the balls to get the highest probability of drawing a red ball? (Hint: the optimal probability is more than $1 / 2$).
Solution Two solutions are presented. Both write a function giving the probability of choosing a red ball and seek to maximize it. One does this using calculus, the other using combinatorial reasoning. Solution 1 (Calculus): (Courtesy of Tom Edgar) Let z be the number of total balls in jar 1 and let x be the total number of red balls in jar 1.

Then, since one has an equal chance of picking either jar, the probability of picking jar 1 is 0.5 and likewise for jar 2.

So the probability of getting a red ball is given by the multivariate function

$$
f(x, z)=0.5 \frac{x}{z}+0.5 \frac{N-x}{2 N-z}
$$

We want to maximize f, so take the partial derivatives, set them equal to zero and solve

$$
f_{x}=0.5 \frac{1}{z}-0.5 \frac{1}{2 N-z}
$$

and

$$
f_{z}=-0.5 \frac{x}{z^{2}}+0.5 \frac{N-x}{(1-z)^{2}}
$$

and we want to maximize on $1 \leq z \leq 100$ and $1 \leq x \leq 50$ (ruling out $(0,0)$ for now) and $x \leq z$.

It turns out there is a critical point, but it ends up being a saddle point.
So, that means that the maximum is on the boundary. The boundary looks like a square with a trapezoid cut out of the bottom (corresponding to the case where $z<50$ and $x>z$).

Turning to the boundary cases, the interesting case is the $x=z$ line. This line contains no critical points and the derivative is negative so the function is decreasing along it. This means f is minimized at the bottom of the line: the case $x=z=1$.

So, this gives the probability of picking a red ball as: $0.5(1 / 1)+0.5(49 / 99)=$ $0.7474 \ldots=74 / 99$.

Solution 2 (Algebra): Pick a jar and let (r, b) represent the number of red and blue balls respectively in that jar. Let N_{a} be the total number of red balls and N_{b} the total number of blue balls. We fix $N=N_{a}=N_{b}$. The function

$$
f(r, b)=\frac{1}{2}\left(\frac{r}{r+b}+\frac{N-r}{2 N-r-b}\right)
$$

gives the probability of drawing a red ball in terms of (r, b). Our goal is to maximize this function.

The jar we picked contains (r, b) so the other jar contains $(N-r, N-b)$. If we picked the other jar in the beginning, we would get the same overall probability, giving the identity $f(r, b)=f(N-r, N-b)$. Thus, if $r \neq b$ we may assume, by possibly switching jars, that $r>b$.

Claim 1. Let a and b be integers.
(1) If $a>b>0$ then $\frac{a}{a+b}<\frac{a-1}{a+b-2}$.
(2) If $b>a>0$ then $\frac{a}{a+b}>\frac{a-1}{a+b-2}$

Proof. (1) Observe $0<a+b-2$. Suppose for contradiction $\frac{a}{a+b} \geq \frac{a-1}{a+b-2}$. Cross multiplying, expanding both sides, and canceling like terms gives $-2 a \geq-a-b$, which is equivalent to $b \geq a$. This is a contradiction, proving the claim.
(2) Similar.

Claim 2. $f(1,0)>1 / 2$
Proof. Since $\frac{N-1}{2 N-1}>0, f(1,0)=\frac{1}{2}\left(1+\frac{N-1}{2 N-1}\right)>1 / 2$.
The next claim is the crucial idea: moving a red and a blue ball to the other jar always improves our odds of picking a red ball.

Claim 3. If $r>b>0$ then $f(r-1, b-1)>f(r, b)$.
Proof. We will show $f(r-1, b-1)-f(r, b)>0$, for which it is enough to show $2 f(r-1, b-1)-2 f(r, b)>0$. Substituting in the definition of f gives

$$
\frac{r-1}{r+b-2}+\frac{N-r+1}{2 N-r-b+2}-\frac{r}{r+b}-\frac{N-r}{2 N-r-b}
$$

Regroup as

$$
\left(\frac{r-1}{r+b-2}-\frac{r}{r+b}\right)+\left(\frac{N-r+1}{2 N-r-b+2}-\frac{N-r}{2 N-r-b}\right)
$$

Since $r>b>0$, the left group is >0, using claim 1.1. In the same way the right group is >0 since $N-b+1>N-r+1>0$. Thus the above expression is greater than 0 , which is what we needed to show.

Claim 4. The case $(1,0)$ is optimal.
Proof. It suffices to show for every pair $(r, b) \neq(1,0)$ with $r \geq b$ that there is some other $\left(r^{\prime}, b^{\prime}\right), r^{\prime} \geq b^{\prime}$ with $f\left(r^{\prime}, b^{\prime}\right)>f(r, b)$.

First consider the case $(r, 0)$ with $r>1$. Then by moving a single red ball to the other jar we see that the probability of drawing a red ball in the first jar stays the same $(=1)$ and the probability of drawing a red ball in the other jar improves. Thus $f(r-1,0)>f(r, 0)$ for $r>1$.

Next consider the case (r, b) with $r=b$. Then $f(r, b)=1 / 2$, and so $f(1,0)>$ $f(r, b)$ by claim 2 .

Finally, suppose we have (r, b) with $r>b>0$. Then by moving one red ball and one blue ball to the other jar we reach the state $(r-1, b-1)$. By claim 3 $f(r-1, b-1)>f(r, b)$, and since $r>b$, we have $r-1>b-1$.

Induction then shows $(1,0)$ is optimal.
This same argument should work in the case $N_{a} \neq N_{b}$, but I haven't tried it yet.

