A Nested Radical

Show the following infinite nested radical is no larger than 2. That is,

$$
\sqrt{1+\sqrt{2+\sqrt{3+\sqrt{4+\cdots}}}}<2
$$

You may assume the radical converges.
Solution. Let A represent the value of the nested radical. From algebra we have

$$
A^{2}-1=\sqrt{2+\sqrt{3+\cdots}}
$$

and also

$$
A \sqrt{2}=\sqrt{2+\sqrt{8+\sqrt{24+\cdots}}}
$$

Comparing the two right hand sides term by term gives the inequality $A^{2}-1<$ $A \sqrt{2}$, which can be rearranged to be $A^{2}-\sqrt{2} A-1<0$. Thinking of the left hand side as the quadratic $x^{2}-\sqrt{2} x-1$, we see that the value of A makes the quadratic negative. The quadratic equation gives the zeros as $\frac{1}{\sqrt{2}}(1 \pm \sqrt{3})$. Since the parabola "points up" it is only negative between its zeros, hence

$$
\frac{1}{\sqrt{2}}(1-\sqrt{3})<A<\frac{1}{\sqrt{2}}(1+\sqrt{3}) .
$$

But $\frac{1}{\sqrt{2}}(1+\sqrt{3})<2$ since $\left(\frac{1}{\sqrt{2}}(1+\sqrt{3})\right)^{2}=\frac{1}{2}(1+2 \sqrt{3}+3)=2+\sqrt{3}<4$. Thus $A<2$. (In fact $\frac{1}{\sqrt{2}}(1+\sqrt{3}) \approx 1.93$.)

Numerical calculation shows $A<1.7579328$.

