The Missing Digit of 2^{29}

Consider the following puzzle:
When evaluated 2^{29} is a nine digit number which is missing exactly one numeral. That is to say it contains every numeral $0-$ 9 except one. Can you determine the missing numeral without direct calculation?

Answer: One needs to consider each digit in the base ten representation of 2^{29}. Let a_{0} represent the digit in the ones position, a_{1} the digit in the 10 's position, and so on up to a_{8} to get the nine digit number $a_{8} a_{7} a_{6} a_{5} a_{4} a_{3} a_{2} a_{1} a_{0}$. Write this number algebraically as $a_{0}+10 a_{1}+10^{2} a_{2}+\cdots+10^{8} a_{8}$.

Reducing modulo 9 gives $2^{29}=a_{0}+10 a_{1}+10^{2} a_{2}+\cdots+10^{8} a_{8} \equiv a_{0}+$ $a_{1}+\cdots+a_{8}(\bmod 9)$. Since 2 and 9 are relatively prime Euler's theorem states $2^{\phi(9)}=2^{6} \equiv 1(\bmod 9)$ where $\phi(x)$ is the Euler phi function, the number of natural numbers less than x and relatively prime to x. Thus $2^{29}=2^{4 \cdot 6+5} \equiv 2^{5} \equiv 5(\bmod 9)$. This means the sum of the digits is equal to 5 modulo 9.

Since each digit but one appears exactly once we can calculate the sum of the digits as being between $36=0+1+\cdots+8$ and $45=1+2+\cdots+9$, depending on which digit is missing. There are 10 numbers in this range and only one, 41 , is equal to 5 modulo 9 . If every digit but 0 were present the sum would be 45 . Since $45-41=4$ the 0 digit must replace the 4 digit. Thus the missing digit is 4 .

To check calculate $2^{29}=536870912$. And the missing digit is 4 .

