Since the answers to the odd numbered exercises are in the back of the book, this mostly contains answers to everything else.

Homework 1

(§0.2) 10 Natural domain is $[-1,1]$. We need $1-x^{2} \geq 0$ which means $1 \geq x^{2}$ so $1 \geq|x|$.
18 Range is $[0, \infty)$. One way to see this: $x^{4}=x x x x=x^{2} x^{2} \geq 0$ since $x^{2} \geq 0$ for all x.

Homework 2

$(\S 0.4) 4$ slope is -2, y-intercept is 0 .
$10 y=\frac{1}{2} x-1$
22 Parallel lines have the same slope. The slope of the given line is $-\frac{1}{2}$ so the desired equation is $y=-\frac{1}{2}(x-0)+4 .\left(\right.$ or $\left.y=-\frac{1}{2} x+4\right)$

Homework 3

$(\S 0.4) 25 I(x)=400+0.08 x$. As revenue increases by $\$ 1$, income increases by $\$ 0.08$.
26 (a) $C(x)=2100+450 x, R(x)=1050 x, P(x)=R(x)-C(x)=600 x-2100$. (b) Want to find x where $P(x)=0$. So $600 x-2100=0$ and solve: $x=\frac{7}{2}$. (c) Calculate $P(9)=3300$. (d) New functions $R(x)=950 x$ and $P(x)=500 x-2100$. Find x where new $P(x)=0$ to be $x=\frac{21}{5}=4 \frac{1}{5}$.
(§0.5) 9 Have $x^{2}-5 x-14=(x+2)(x-7)$ so roots are at $x=-2$ and $x=7$. Since this quadratic is pointing up it is positive on intervals $(-\infty,-2)$ and $(7, \infty)$; negative on $(-2,7)$.
$124 x^{2}-9=4\left(x+\frac{3}{2}\right)\left(x-\frac{3}{2}\right)$. The quadratic is pointing up so it is positive on $\left(-\infty,-\frac{3}{2}\right)$ and $\left(\frac{3}{2}, \infty\right)$ and negative on $\left(-\frac{3}{2}, \frac{3}{2}\right)$.

26 Function is $h(t)=-16 t^{2}+48 t+56$ for $t \geq 0$ (a) Find zeros by quadratic formula to be $\frac{3 \pm \sqrt{23}}{2}$. One root is positive, the other negative. Since domain is $t \geq 0$ discard the negative root, so the rock hits the ground at $t=\frac{3+\sqrt{23}}{2}$. (b) Since the quadratic points down, the vertex gives the maximum. The vertex has t-coordinate $\frac{-b}{2 a}=\frac{3}{2}$. So rock is at maximum height $t=\frac{3}{2}$ seconds after being thrown. (c) The maximum height is $h\left(\frac{3}{2}\right)=92$ feet.

Homework 4

$(\S 0.5) 23 x^{2}-6 x+7=3(x-1)^{2}+4$. The parabola opens up and has vertex at $(1,4)$.
$4-2 x^{2}+x+1=-2\left(x-\frac{1}{4}\right)^{2}-\frac{9}{8}$. It opens down; vertex is at $\left(\frac{1}{4}, \frac{9}{8}\right)$.
$102 x^{2}-x-1=2\left(x^{2}-\frac{1}{2} x-\frac{1}{2}\right)=2\left(x+\frac{1}{2}\right)(x-1)$. The parabola opens up so the function is positive on $\left(-\infty,-\frac{1}{2}\right)$ and $(1, \infty)$. It is negative $\left(-\frac{1}{2}, 1\right)$.
$143 x^{2}+5 x-2=2\left(x-\frac{1}{3}\right)(x+2)$. It is positive on $(-\infty,-2)$ and $\left(\frac{1}{3}, \infty\right)$. It is negative on $\left(-2, \frac{1}{3}\right)$.
(§0.6) 2 As x goes to the right the function decreases. As x goes to the left, it also decreases.
4 As $x \rightarrow \infty$ the function increases. As $x \rightarrow-\infty$ the function increases.

Homework 5

(§0.6) $6 n$ is even and a_{n} is positive.
$8 n$ is even and a_{n} is negative.
10 Asymptote at $x=1$. Function is positive on right, negative on left.

Homework 6

(§1.1) 2 (a) -2 , (b) 3 , (c) 2
4 At $x=1$ and $x=3$ since at these values the one sided limits are unequal.
10 (a) omitted, (b) $\lim _{t \rightarrow 8^{-}} r(t)=5, \lim _{t \rightarrow 8^{+}} r(t)=8$. (c) All $x \neq 8,16(16=4$ p.m. in 24 hour time $)$. Include $x \neq 0,24$ if the domain of the function is $[0,24]$ (this is unclear from the statement).
$12 \lim _{x \rightarrow 2}\left(x^{2}+x-3\right)=4+2-3=3$.
$16 \lim _{x \rightarrow 1} \frac{x+1}{x^{2}-1}=\lim _{x \rightarrow 1} \frac{x+1}{(x+1)(x-1)}=\lim _{x \rightarrow 1} \frac{1}{x-1}$. This limit does not exist.
$30 \lim _{h \rightarrow 0} \frac{(h-3)^{2}-9}{h}=\lim _{h \rightarrow 0} \frac{h^{2}-6 h}{h}=\lim _{h \rightarrow 0} h-6=-6$.

Homework 7

$(\S 1.1) 6$ (a) $3,(\mathrm{~b})-1,(\mathrm{c}) 0,(\mathrm{~d}) g(2)=3$ and $g(3)=0$.
8 At $x=2$ and $x=3$ since the one-sided limits are different at these two places.
400
46 Since $f(x)=\frac{x}{x}$ when $x>0, \lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} \frac{x}{x}=\lim _{x \rightarrow 0^{+}} 1=1$.
$(\S 1.2) 2(\mathrm{a})-1,(\mathrm{~b}) 0,(\mathrm{c})+\infty,(\mathrm{d})-1$, (e) 0 .
32 How does the function $W(y)$ behave as the years pass? This is asking for $\lim _{y \rightarrow \infty} W(y)$. Calculate: $\lim _{y \rightarrow \infty} W(y)=\lim _{y \rightarrow \infty}\left[200+\frac{1000}{y+1}\right]=\lim _{y \rightarrow \infty} 200+\lim _{y \rightarrow \infty} \frac{1000}{y+1}=200+1000 \lim _{y \rightarrow \infty} \frac{1}{y+1}=$ $200+1000 \cdot 0=200$.

Homework 8

(§1.3) $1 f$ is discontinuous at $x=-1$ (jump), $x=1$ (hole), $x=4$ (asymptote), $x=6$ (hole), and $x=8$ (jump).

6 At $x=1$ and $x=6$.
10 omitted
22 (a) $f(1)=1^{2}=1, f(2)=2^{2}=4, f(3)=2 \cdot 3=6, f(4)=\sqrt{4}=2, f(5)=\sqrt{5}$. (b) Each piece of f is continuous on where they are defined so f is continuous on $(-\infty, 2),(2,4)$ and $(4, \infty)$. Since $\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}} x^{2}=4$ and $\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}} 2 x=4$ and $f(2)=4, f$ is continuous at $x=2$. Only one point left: $\lim _{x \rightarrow 4^{-}} f(x)=\lim _{x \rightarrow 4^{-}} 2 x=8$ and $\lim _{x \rightarrow 4^{+}} f(x)=\lim _{x \rightarrow 4^{+}} \sqrt{x}=2$. The two one-sided limits are unequal so we can stop right here; f is discontinuous at $x=4$.

Homework 9

(§2.1) $15 b^{2 u}=\left(b^{u}\right)^{2}=3^{2}=9$.
$16 b^{-v}=\frac{1}{b^{v}}=\frac{1}{4}$.
$17 b^{v-u}=\frac{b^{v}}{b^{u}}=\frac{4}{3}$.
$18 b^{u+2 v}=b^{u} b^{2 v}=b^{u}\left(b^{v}\right)^{2}=3 \cdot 4^{2}=48$.
$19 b^{0}=1$.
$20 b^{v / 2}=\sqrt{b^{v}}=\sqrt{4}=2$.
23 (a) $500(1+0.07)^{t}$, (b) Plug in $t=10: 500(1.07)^{10} \approx 983.58$.
26 Let P be the starting amount. Then we have $5000=P(1.05)^{8}$. Now solve for $P=5000 /(1.05)^{8} \approx$ 3384.20.

34 After 5 days we will have $y_{0}(0.93)^{5}$ grams. We need to solve for y_{0}. To do that look at the third day data. On the third day we have $200=y_{0}(0.93)^{3}$. Solve for $y_{0}=\frac{200}{\left(0.93^{3}\right)} \approx 248.65$. Now we can calculate the fifth day: $(248.65)(0.93)^{5} \approx 172.98$ grams.

Homework 10

(§2.2) 3 (a) Compounded daily: $100\left(1+\frac{0.07}{365}\right)^{20 \cdot 365} \approx 405.47$. (b) Compounded continuously: $100 e^{0.07 \cdot 20} \approx$ 405.52.

4 (a) Compounded annually: $5000(1+0.045)^{2} 1 \approx 12601.21$. (b) Compounded quarterly: $5000(1+$ $\left.\frac{0.045}{4}\right)^{4 \cdot 21} \approx 12796.37$. (c) Compounded continuously: $5000 e^{0.045 \cdot 21} \approx 12864.07$.
$14 \lim _{n \rightarrow \infty}\left(1+\frac{1}{4 n}\right)=\lim _{n \rightarrow \infty}\left(1+\frac{1 / 4}{n}\right)=e^{1 / 4}$.
$16 \lim _{n \rightarrow \infty} 100\left(1-\frac{1}{2 n}\right)=100 \lim _{n \rightarrow \infty}\left(1+\frac{-1 / 2}{n}\right)=100 e^{-1 / 2}$.
(§2.3) $2 \log _{2} \frac{1}{4}=-2$ since $2^{-2}=\frac{1}{2^{2}}=\frac{1}{4}$.
$4 \log _{9} 3=\frac{1}{2}$ since $9^{1 / 2}=\sqrt{9}=3$.
$6 \log _{8} 4=\frac{2}{3}$ since $8^{2 / 3}=(\sqrt[3]{8})^{2}=2^{2}=4$.

Homework 11

(§2.3) $8 \log _{(0.1)} 100=-2$ since $(0.1)^{-2}=\left(\frac{1}{10}\right)^{-2}=\frac{1}{(1 / 10)^{2}}=\frac{1}{1 / 100}=100$. This is a hard one since the base is less than 1 . I would first rewrite the base as $1 / 10=10^{-1}$, find the base 10 logarithm and then negate it to get the base $1 / 10$ logarithm.
14 Let $\log _{1 / 3} 3 \sqrt{3}=n$. Then $\frac{1}{3}^{n}=3 \sqrt{3}=3^{1+1 / 2}=3^{3 / 2}$. Since $\frac{1}{3}^{n}=\frac{1}{3^{n}}=3^{-n}$ equating the two expressions gives $3^{-n}=3^{3 / 2}$, so $n=-3 / 2$. Thus $\log _{1 / 3} 3 \sqrt{3}=-\frac{3}{2}$.
17 (a) $\log _{10} 40=\log _{10} 4 \cdot 10=\log _{10} 4+\log _{10} 10=\log _{10} 4+1 \approx 1.602$.
(b) $\log _{10} \cdot 4=\log _{10} \frac{4}{10}=\log _{10} 4-\log _{10} 10=\log _{10} 4-1 \approx-0.398$.
(c) $\log _{10} \cdot 25=\log _{10} \frac{1}{4}=\log _{10} 1-\log _{10} 4=0-\log _{10} 4 \approx-0.602$.
(d) $\log _{10} 2=\log _{10} \sqrt{4}=\frac{1}{2} \log _{10} 4 \approx 0.301$.
(§2.4) $25^{x}=e^{\ln 5^{x}}=e^{x \ln 5}$.
$10 \ln \left(e^{-2}\right)=-2 \ln e=-2$.
$14 e^{-\ln 2}=e^{\ln 2^{-1}}=e^{\ln \frac{1}{2}}=\frac{1}{2}$.
$\mathbf{3 6} e^{x / 2}=7$. Take the logarithm of both sides: $\ln e^{x / 2}=\ln 7$. Simplify: $\frac{x}{2}=\ln 7$. Solve for $x=2 \ln 7=\ln 49$.

38 We have $e^{x^{2}}=10$. Take logarithm of both sides and simplify: $x^{2}=\ln 10$. So $x= \pm \sqrt{\ln 10}$.

Homework 12

(§2.4) $39 \ln (x+1)=1$. Raise e to the power of both sides $e^{\ln (x+1)}=x+1=e^{1}$. Solve for x : $x=e-1$.
$40 \ln (2 x)=3$ gives $2 x=e^{3}$. Solve for $x: x=\frac{1}{2} e^{3}$.
$46 \ln (\ln x)=0$. Exponentiate by $e: \ln x=1$, and again: $x=e^{1}=e$.
70 Put in the constants to get $78=72+(98.6-72)(0.6)^{h}$. Simplify to get $\frac{6}{26.6}=(0.6)^{h}$. Take logarithms: $\log _{0.6} \frac{6}{26.6}=h$. So $h=\frac{\ln (6 / 26.6)}{\ln 0.6} \approx 2.92$ hours.
(p. 157) 16 (a)

17 (b)
18 (d)
19 (b) (This case is identical to problem 17 since $\left.2^{-x}=\left(\frac{1}{2}\right)^{x}\right)$.

Homework 13

(§3.1) 1 Eyeball the slope to be $\frac{1 / 2}{1 / 4}=2$.
2 A, B.
3 C, D.
$4 \mathrm{~A}, \mathrm{~B}, \mathrm{D}, \mathrm{C}$.
9 Using the fact that the for $f(x)=x^{2}$ the slope of the tangent line at $\left(a, a^{2}\right)$ is $2 a$: (a) the slope is 1 , line is $y=\left(x-\frac{1}{2}\right)-\frac{1}{4}$, (b) slope 0 , (c) slope is -6 .
16 Using the work from the activity, the slope of $f(x)=x^{3}$ at $\left(a, a^{3}\right)$ is $3 a^{2}$. The question is then for which a is $-1=3 a^{2}$. Solve for $a: a=\sqrt{-\frac{1}{3}}$. There are no such a.
25 (a) Calculate $f(1+h)-f(1)=1+2 h+h^{2}+1+h-1-1=h^{2}+3 h$. So slope is $\frac{h^{2}+3 h}{h}$. (b) We have $\lim _{h \rightarrow 0} \frac{h^{2}+3 h}{h}=3$. (c) In general $f(x+h)-f(x)=x^{2}+2 h x+h^{2}+x+h-x^{2}-x=2 h x+h^{2}+h$. Take the limit: $\lim _{h \rightarrow 0} \frac{2 h x+h^{2}+h}{h}=2 x+1$. (d) At $(1,2)$ have $y=3(x-1)+2$. At $(-2,2)$ have $y=-3(x+2)+2$. And at $(-1,0)$ have $y=-(x+1)$.
26 (a) Calculate $f(x+h)-f(x)=3 x^{2}+6 x h+3 h^{2}-3 x^{2}=6 x h+3 h^{2}$. So the slope is $\frac{6 x h+3 h^{2}}{h}$. (b) The limit is then $6 x$. (c) at $(1,3)$ have $y=6(x-1)+3$; at $(-1,3)$ have $y=-6(x+1)+3$; and at $\left(\frac{1}{2}, \frac{3}{4}\right)$ have $y=3\left(x-\frac{1}{2}\right)+\frac{3}{4}$.
34 (a) graph omitted. Since $f(t+h)-f(t)=-t^{2}-2 t h-h^{2}+100-\left(-t^{2}+100\right)=-2 t h-h^{2}$. Then $\lim _{h \rightarrow 0} \frac{-2 t h-h^{2}}{h}=-2 t$. (b) At $t=4$ the slope is -8 . So the sales are falling. (c) the line is $y=-8(t-4)+84$. The x intercept is then $t=14.5$ weeks.

