Practice Exam 2 Answers - Math 10240

This questions should give an idea of how the exam will be. The actual exam will have fewer questions - probably around 16 . Like last time there will be 12 multiple choice and 4 short answer questions.

1. $b^{u-v}=4 . b^{v-u}=\frac{1}{4} \cdot b^{u / 2}=\sqrt{6} \cdot b^{-v}=\frac{2}{3}$.
2. omitted.
3. $\lim _{x \rightarrow \infty} 2^{x}=\infty . \lim _{x \rightarrow-\infty} 2^{x}=0 . \lim _{x \rightarrow \infty} 1.001^{x}=\infty . \lim _{x \rightarrow 0} 0.95642^{x}=1$. Is it true that $\lim _{x \rightarrow 1} b^{x}=b$ for all b ? Yes.
4. On first day 1 penny, on second day 2 pennies. On n-th day, 2^{n-1} pennies, so on the 31 st day, $2^{31-1}=2^{30}=1,073,741,824$ pennies, or $\$ 10,737,418.24$. Not a good bet for you.
5. $e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$.
6. $\lim _{x \rightarrow \infty}\left(1+\frac{r}{x}\right)^{x}=e^{r}$.
7. $\lim _{x \rightarrow \infty}\left(\frac{x+1}{x}\right)^{x}=\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=e$.
8. $t=66.229$ years.
9. $t=6.57881$ months. (about 200 days)
10. $\sqrt[89]{20.07}=e^{\frac{1}{89} \ln \left(\frac{2007}{100}\right)}$. So I guess the button sequence would be $2007 \div \div 100 \ln x \quad \div 89$ e^{x}.
11. $x=1$.
12. $x=e^{1 / e}$.
13. The domain is $(0, \infty)$.
14. $\log _{\pi} 2007=\frac{\ln 2007}{\ln \pi}$.
15. No.
16. No.
17. $\log _{1 / e} e=-1$.
18. $\log _{7} 14-\frac{1}{2} \log _{7} 4=1$.
19. $\log _{3} 6+\log _{3} 12-\log _{3} 8=2$.
20. $\log _{12} 20-\log _{12} 240=-1$.
21. $\ln \left(e^{\log _{9} 3^{x}}\right)=\frac{x}{2}$.
22. The half-life is about 8.076 days. (The decay rate is $r=-0.0858$).
23. Find $f^{\prime}(x)=-4 x+1$, so $f^{\prime}(0)=1$, so tangent line is given by $y=x-7$.
24. If $f(t)=t^{17}$ then $\lim _{x \rightarrow 0} \frac{(x+9)^{17}-9^{17}}{x}=f^{\prime}(9) . f^{\prime}(t)=17 t^{16}$ and $f^{\prime}(9)=17(9)^{16}=31,501,343,210,481,297$. (This number is quite large. Sorry. On the test $17(9)^{16}$ is fine.) This is like the other one: $\lim _{x \rightarrow 0} \frac{(x+9)^{17}-9^{17}}{2 x}=\lim _{x \rightarrow 0} \frac{1}{2} \frac{(x+9)^{17}-9^{17}}{x}=\frac{1}{2} f^{\prime}(9)=\frac{17}{2} 9^{16}$.
25. The points are $\left(-1, \frac{1}{e}\right)$ and $(1, e)$. So the slope of the line connecting them is $\frac{e-\frac{1}{e}}{1-(-1)}=\frac{e-1 / e}{2}$.
26. Find $f^{\prime}(x)=\ln x+1$, so slope of tangent line at $x=\frac{1}{e}$ is $f^{\prime}\left(\frac{1}{e}\right)=-1+1=0$. The point is $\left(\frac{1}{e}, f\left(\frac{1}{e}\right)\right)=\left(\frac{1}{e},-\frac{1}{e}\right)$, so the line is $y=-\frac{1}{e}$. For the other point the slope of tangent line at $x=e$ is $f^{\prime}(e)=1+1=2$. The point is $(e, f(e))=(e, e)$ so the equation of the line is $y=2(x-e)+e$.
27. All tangent lines of a constant function are horizontal, and horizontal lines have slope 0 .
28. $f^{\prime}(a)$ is slope of the tangent line to the point $(a, f(a))$. Or $f^{\prime}(a)$ is the rate at which the value of $f(x)$ is changing at $x=a$.
29. $\frac{d}{d x}(5 f(x))=5 \frac{d}{d x} f(x)=5 f^{\prime}(x)=5\left(x^{7}+e^{x}\right)$.
30. Use the product rule: $g^{\prime}(x)=\left(x^{7}-1\right)^{\prime} f(x)+\left(x^{7}-1\right) f^{\prime}(x)$. Use the chain rule $\frac{d}{d x} f\left(x^{2}\right)=$ $f^{\prime}\left(x^{2}\right) \frac{d}{d x} x^{2}=\frac{2 x}{2 x^{2}+5}$. Also use the chain rule $\frac{d}{d x} f(\ln x)=f^{\prime}\left(x^{2}\right) \frac{d}{d x} \ln x=\frac{1}{x(2(\ln x)+5)}$. (If you wondered which function has this derivative try $\left.f(x)=\frac{1}{2} \ln (2 x+5)\right)$.
31. $\lim _{x \rightarrow 2} \sqrt{\frac{x^{2}-4}{x-2}}=\sqrt{\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}}=\sqrt{4}=2$.
32. This is the derivative of e^{t} at $t=0$. Since $\frac{d}{d t} e^{t}=e^{t}, \lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=e^{0}=1$.
33. $\frac{d}{d x} x^{51}=51 x^{50}$
34. $\frac{d}{d x} \sqrt{x}=\frac{1}{2 \sqrt{x}}$.
35. $\frac{d}{d x} \sqrt[3]{x}=\frac{1}{3} x^{-2 / 3}$.
36. $f^{\prime}(x)=-\frac{4}{5} x^{-9 / 5}$.
37. $f^{\prime}(x)=2007 x^{2006}-56056 x^{1000}$.
38. $\frac{d}{d x} \frac{\ln x}{x}=\frac{1-\ln x}{x^{2}}$.
39. $\frac{d}{d x} e^{x^{2}-x}=(2 x-1) e^{x^{2}-x}$.
40. $\frac{d}{d x} e^{x}=e^{x}$.
41. $\frac{d}{d x} \ln \sqrt{x}=\frac{1}{2 x}$.
42. $\frac{d}{d x} x e^{x}=e^{x}(1+x)$.
43. $\frac{d}{d x} \ln (2 x+1)=\frac{2}{2 x+1}$.
44. Have $s(t)=23+7 t+15 t^{2}-t^{3}$. So $v(t)=s^{\prime}(t)=7+30 t-3 t^{2}$ and $a(t)=v^{\prime}(t)=30-6^{t}$. This is negative for $t \geq 5$ so yes.
45. $h(t)=-16 t^{2}+20 t+5$ so $v(t)=h^{\prime}(t)=-32 t+20 . v(1)=-12$. Velocity is negative when $t \geq \frac{5}{8}$. If the velocity is negative the ball is falling to the ground (as opposed to raising away from the ground).
46. Remember $e^{t^{2}}=e^{\left(t^{2}\right)}$. Find $g^{\prime}(t)=2 t e\left(t^{2}\right)$. Slope of tangent line at $t=1$ is $g^{\prime}(1)=2 e$.
47. The function is $f(x)=\sqrt{x}$. Find $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}$. The base point for the approximation is $a=1600$. The slope of f at 1600 is $f^{\prime}(1600)=\frac{1}{80}$. The equation for the tangent line at $x=1600$ is $y=\frac{1}{80}(x-1600)+40$. Estimate $f(1700) \approx \frac{1}{80}(1700-1600)+40=41.25$.
48. $f(x)=|x|$ is continuous but not differentiable at $x=0$.
49. $\frac{x-3}{x-3}$ is not differentiable at $x=3$ since it is not continuous there.
