Exam 1 Review Guide

Chapter 0

0.1

-Know interval notations
-Be able to add/subtract/multiply/divide fractions
-Be comfortable graphing points on the Cartesian plane

0.2 : Functions

-Function is a rule that assigns at most 1 output for every input
-Understand how to write functions based on word description
-Be able to evaluate functions at different values
-Know independent vs. dependent variable
-Remember, $f(x)$ gives a y-height on the graph
-Find natural domains
-Recall that we look for numbers that are NOT in the domain
-Everything else will be in the domain
-There are two rules to see if something is not in the domain
-We cannot divide by 0
-We cannot take the square root of a negative
-Find problem points by setting up equalities/inequalities: solve
-Vertical Line Test-be able to use it to determine if a curve is a function

0.4 : Linear Functions

$-f(x)=m x+b, m$ is slope, b is y-intercept (slope intercept form)
$-y-y_{1}=m\left(x-x_{1}\right)$ (point slope form)
-Find equations of lines given either two points, or one point and slope

- Cost Functions, Revenue Functions, Profit Functions
-Supply and Demand Curves

0.5 : Quadratic Functions

$-f(x)=a x^{2}+b x+x$
-Know how to find roots, either factoring or using quadratic formula
-We factor in order to find x-intercepts, i.e x-values which output 0 .
-Know how to find vertex of quadratic
-Be able to graph a quadratic. (find vertex, pointing up or down, etc)
-Know whether the vertex is the minimum or maximum of the range

0.6 : Polynomials, Rational Functions, Power Functions

-Understand behavior of polynomials for x-values of large absolute value -What happens to the graph as x gets large positively or large negatively -Know where rational functions are defined (Find vertical asymptotes and holes) -Be able to calculate things of the form $a^{\frac{p}{q}}$

Chapter 1

1.1 : Limits

-Know the informal definition of the limit and what it means: $\lim _{x \rightarrow a} f(x)=L$

- Fact: $\lim _{x \rightarrow a} x^{n}=a^{n}$
-Use the above and know the limit laws to evaluate limits of functions
-Plug in the value if you can. If you can't you must do more work.
-Be able to find limits where function has a hole
-Know how to find one sided limits (particularly when $\lim _{x \rightarrow a} f(x)$ DNE)
-Know that $\lim _{x \rightarrow a} f(x)$ exists if and only if the one sided limits are equal.
-Remember, if all else fails, use a table of values close to $x=a$

1.2: More Limits and Asymptotes

-Be able to find limits at vertical asymptotes (Using values close to $x=a$ on both sides)
-Understand $\lim _{x \rightarrow \pm \infty} f(x)$ is a horizontal asymptote
-Be able to find horizontal asymptotes of rational functions
-Only depends on term with largest power of x in numerator \& denominator

1.3 : Continuity

-Know the definition of continuity, be able to explain it in your own words
-Find discontinuities of a function based on the graph, or the formula
-Understand the idea of the Intermediate Value Theorem
-Use the IVT to know in which intervals roots occur based on a table of values.

