Study Guide Exam 2

This exam will test you on the definitions of the terms as well as with computations. There will be no calculators on the exam. The essential concepts are exponential/logrithmic functions and the derivative.

 $\S2.1$ Exponential Functions

General properties of exponential functions b^x (domain is $(-\infty, \infty)$, range is $(0, \infty)$, etc.) Know how to graph exponential functions Know Exponent rules (e.g. $b^m b^n = b^{m+n}$) Understand how to set up and solve the exponential growth/decay word problems

§2.2 Compound Interest and the Number eKnow definition of eKnow how to represent e^r as a limit Know compound interest formula $A(t) = Pe^{rt}$ and how to use it with word problems

§2.3 and §2.4 Logarithmic Functions and Natural Logarithm and Applications

What is an inverse function? Know definition of $\log_b x$ for any b. The logarithm is the inverse function of exponentiation (i.e. $b^{\log_b x} = x$ and $\log_b b^x = x$) Know how to graph logarithmic functions Manipulate and solve equations with logarithms Know logarithm rules (e.g. $\log_b a^n = n \log_b a$) Know what the natural logarithm is $(\ln x = \log_e x)$ Be able to represent b^x as a power of eBe able to represent $\log_b x$ using natural logarithms (e.g. $\log_3 7 = \frac{\ln 7}{\ln 3}$)

§3.1 Slope of a Graph

Be able to calculate equations of secant lines for a graph Know how to calculate the slope of the tangent line to a graph at a specific point Understand how to interpret the slope of a graph (as a tangent line, as a rate of change)

§3.2 Derivatives

Know definition of the derivative as a limit What does the derivative of a function tell us? Know derivatives of x^m , constant functions, polynomials Know the constant rule and the sum rule Be able to find the equation for the tangent line of a function at a given point

 $\S{3.3}$ Derivative as a Rate

The derivative of a function also gives the rate at which the function is changing The derivative of a position function gives velocity; the derivative of velocity gives acceleration.

$\S{3.4}$ Differentiability

One can approximate a function near a point using the tangent line. What does it mean for a function to not be differentiable at a point? What is the relationship between differentiability and continuity? Give examples of functions which are not differentiable

Know how to use these rules to calculate derivatives

§3.5 and §3.6 and §3.7 Derivative of Logarithms and Exponentials and more Rules Know the derivative of $\ln x$ and e^x Know the product, quotient and chain rules (quotient rule is really chain rule in disguise)