Study Guide Exam 2

This exam will test you on the definitions of the terms as well as with computations. There will be no calculators on the exam. The essential concepts are exponential/logrithmic functions and the derivative.

§2.1 Exponential Functions

General properties of exponential functions b^{x} (domain is $(-\infty, \infty)$, range is $(0, \infty)$, etc.)
Know how to graph exponential functions
Know Exponent rules (e.g. $b^{m} b^{n}=b^{m+n}$)
Understand how to set up and solve the exponential growth/decay word problems
§2.2 Compound Interest and the Number e
Know definition of e
Know how to represent e^{r} as a limit
Know compound interest formula $A(t)=P e^{r t}$ and how to use it with word problems
$\S 2.3$ and $\S 2.4$ Logarithmic Functions and Natural Logarithm and Applications
What is an inverse function?
Know definition of $\log _{b} x$ for any b. The logarithm is the inverse function of exponentiation (i.e. $b^{\log _{b} x}=x$ and $\log _{b} b^{x}=x$)

Know how to graph logarithmic functions
Manipulate and solve equations with logarithms
Know logarithm rules (e.g. $\log _{b} a^{n}=n \log _{b} a$)
Know what the natural logarithm is $\left(\ln x=\log _{e} x\right)$
Be able to represent b^{x} as a power of e
Be able to represent $\log _{b} x$ using natural logarithms (e.g. $\log _{3} 7=\frac{\ln 7}{\ln 3}$)
§3.1 Slope of a Graph
Be able to calculate equations of secant lines for a graph
Know how to calculate the slope of the tangent line to a graph at a specific point
Understand how to interpret the slope of a graph (as a tangent line, as a rate of change)

§3.2 Derivatives

Know definition of the derivative as a limit
What does the derivative of a function tell us?
Know derivatives of x^{m}, constant functions, polynomials
Know the constant rule and the sum rule
Be able to find the equation for the tangent line of a function at a given point
§3.3 Derivative as a Rate
The derivative of a function also gives the rate at which the function is changing
The derivative of a position function gives velocity; the derivative of velocity gives acceleration.

§3.4 Differentiability

One can approximate a function near a point using the tangent line.
What does it mean for a function to not be differentiable at a point?
What is the relationship between differentiability and continuity?
Give examples of functions which are not differentiable
$\S 3.5$ and $\S 3.6$ and $\S 3.7$ Derivative of Logarithms and Exponentials and more Rules
Know the derivative of $\ln x$ and e^{x}
Know the product, quotient and chain rules (quotient rule is really chain rule in disguise)
Know how to use these rules to calculate derivatives

