\qquad

Activity \# 3

1. Your company has just acquired Michiana's finest paper cup manufacturer. The current design can hold $2 \sqrt{3}$ cubic inches of water, but your boss thinks you can do better. The machine makes cups which are conical and uses paper that is 3 inches wide. Can you find a radius and height for a cup that will hold more water?
(a) What is the relationship between the radius (r), height (h), and paper width $(s=3)$?

(b) Use an integral to find the volume of a paper cup in terms of r and h. What is the volume in terms of h alone?
(c) What value of h gives the largest volume?
(d) Is the maximum volume more than $2 \sqrt{3}\left(=\frac{6}{\sqrt{3}}\right)$? What are r and h ?
2. Your boss then comes up with the brilliant idea that the cups be redesigned as in the following diagram. The curve is $\frac{1}{x}$ and the segment from 1 to a is rotated around the x axis.

(a) What is the volume of this cup in terms of a ?
(b) She also wants it to hold 4 cubic inches of water. What value of a, if any, achieves this? (Hint: What is the limit of the volume as a goes to infinity?)
