Math 10360 - Activity 5 - Spring 2007

Name: \qquad Date: April 12, 2007
(1) (a) Write down a (non-constant) sequence that converges.
(b) Can you construct a sequence that diverges but doesn't go to $+\infty$ or $-\infty$?
(2) The Fibonacci sequence is defined recursively by

$$
a_{n+2}=a_{n}+a_{n+1} \text { where } a_{1}=1 \text { and } a_{2}=1
$$

(a) Write the first 9 terms of the Fibonacci sequence.
(b) Write the first 8 terms of the ratio sequence defined by

$$
b_{n}=\frac{a_{n+1}}{a_{n}}, n \geq 1
$$

(c) Using the above definition, show that

$$
b_{n}=1+\frac{1}{b_{n-1}} .
$$

(d) The golden ratio φ is defined by

$$
\lim _{n \rightarrow \infty} b_{n}=\varphi
$$

(i) Show that $\varphi=1+\frac{1}{\varphi}$. (Hint: first notice that $\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} b_{n-1}$, and then use the properties of limits.)
(ii) Solve the equation in (i) for φ. (Hint: use the quadratic equation.)

