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Overview

* Using source and target syntax
* Why is it hard?
* How can we make it better?
* Let the model learn how much syntax to use

* The model does choose syntax, for improvements of +0.6-0.8 BLEU
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A SCE R A B RR, LT EE 4 RO S

Japan MEXT official said , “ Abraham 's comment make us deeply-feel courage

reference: An official from Japan ’s science and technology ministry said , " We are
highly encouraged by Abraham s comment .

Hiero: Officials of the Japanese ministry of education and science , " said Abraham
speeches , we are deeply encouraged by .

string-to-tree: Japan ’s ministry of education , culture , sports, science and
technology , " Abraham ’s statement , which is most encouraging , " the official said .
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STSG translation

Liu et al, 2009 Zhang et al, 2008

phrase 23.66 phrase 23.86

STSG 20524 STSG 24.71

Ambati and Lavie, 2008

phrase 30.18

STSG 25




Why is tree-to-tree hard?

too few rules too few derivations
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Extracting more rules
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Extracting more rules
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Tree-Sequence Substitution Grammar Syntax-Augmented Machine
(M. Zhang et al., 2008) Translation (Venugopal & Zollmann)
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Why is tree-to-tree hard?
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Allow more dertvations

NP + STSG: allow only matching

/\ substitutions

QP NNS
/N * Hiero-like: allow any
IR IN CD substitutions
‘ ‘ ‘ NP * Let the model learn to choose:

more than 20
/\ * matching substitutions
NN  NNS

‘ ‘ * mismatching substitutions

check points
* monotone phrase-based



Allow more dertvations
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Allow more dertvations

Cross-lingual features

NP NN+NNS
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fire root:NPNN+NNS

suggested by Adam Pauls



Allow more dertvations
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Fxperiments

~ Chinese-English ~ Arabic-English

parallel text 240M+260M 190+220M
language model 2G
parser (source) 800k 600k

parser (target) 2.1M




Results

Chinese-English Arabic-English

extraction rules feats BLEU rules feats BLEU

Hiero 440M | 1k | 23.7 |790M | 1k | 489

fuzzy STSG | 50M | 5k 239 | 38M | bk 47 .5

fuzzy STSG
+binarize

fuzzy STSG
+SAMT

64M | bk | 243 | 40M | 6k | 48.1

440M 160k | 24.3 | 790M 130k 49.7




Example tree-to-tree translation

Ak M EE AR R, WENENEE 4 RIS
Japan MEXT official said , “ Abraham 's comment make us deeply-feel courage

reference: An official from Japan ’s science and technology ministry said , " We are
highly encouraged by Abraham ’s comment .

Hiero: Officials of the Japanese ministry of education and science , " said Abraham
speeches , we are deeply encouraged by .

string-to-tree: Japan ’s ministry of education, culture, sports, science and
technology , " Abraham ’s statement , which is most encouraging , " the official said .

Fuzzy STSG, binarize: Officials of the Japanese ministry of education , culture , sports,
science and technology , said , " we are very encouraged by the speeches of Abraham .
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Rule usage (Chinese-English)

" Match B Mismatch Glue

Hiero Fuzzy STSG+SAMT Hiero Fuzzy STSGHESATVIEE
Chinese side English side



Rule usage (Arabic-English)

" Match B Mismatch Glue

Hiero Fuzzy STSG+SAMT Hiero Fuzzy STSGHESATVIEE
Arabic side English side



Conclusions

* Why is tree-to-tree translation hard?
* Too few rules
* Too few derivations
* How can we make it better?
* Extract more rules: even simple binarization works

* Allow more derivations: let model learn how much syntax to use





