
Formal grammars for estimating partition functions of
double-stranded chain molecules

David Chiang
Dept of Computer and Information Science

200 S 33rd St
Philadelphia PA 19104-6389

dchiang@cis.upenn.edu

Aravind K. Joshi
Dept of Computer and Information Science

200 S 33rd St
Philadelphia PA 19104-6389

joshi@cis.upenn.edu

ABSTRACT
This paper looks at an algorithm due to Chen and Dill for
estimating the partition functions of a restricted subclass of
double-stranded polymers, and shows how it can be translated
into a context-free grammar, so that their algorithm reduces
to a variant of the CKY parsing algorithm. Our formulation
clarifies the structure of Chen and Dill’s algorithm, leading to
revised complexity analyses and an optimization in one case,
and lays a formal foundation for generalizing this method to
more complex cases by the use of grammars beyond context-
free power such as tree adjoining grammars.

1. INTRODUCTION
An important problem in the statistical mechanics of bio-

molecules is the computation of thepartition function of a
molecule, which is used to predict various physical properties
of the molecule, including its stable conformations and con-
formational changes. Chen and Dill [1, 2] propose a model
for a restricted subclass of molecules which gives an efficient
approximate solution to this problem.

The goal of this paper is to show how Chen and Dill’s model
can be translated into a context-free grammar (CFG), so that
their algorithm reduces to a variant of the CKY parsing al-
gorithm [7, 14]. This formulation clarifies the structure of the
algorithm, leading to a revised complexity analysis and an op-
timization in one case, and lays a formal foundation for gener-
alizing this method to more complex cases using, for example,
tree adjoining grammars [4, 6].

Molecules like RNAs or proteins aresequencesof building
blocks—nucleotides for RNA or amino acids for proteins—
but they do not lie in straight lines in space. Rather, bonds,
which we will call self-contacts, may form between nonadja-
cent members of the sequence, folding it into a certain shape
in space. A pattern of self-contacts may be represented by a
polymer graph(see Figure 1) in which straight edges repre-

.

sent the linear structure of the sequence, and curved edges rep-
resent the self-contacts. A polymer graph constrains but does
not completely determine the shape of a molecule in space. In
short, one sequence may correspond to many different poly-
mer graphs, and one polymer graph may correspond to many
different shapes orconformations.

The partition function of a molecule gives the relative ac-
cessibility of the possible conformations of the molecule. It is
defined as

Q =
∑

j

e−Ej/kT (1)

whereT is the temperature,k is Boltzmann’s constant,j ranges
over the conformations of the molecule, andEj is the energy of
conformationj. Since all the conformations corresponding to
a single polymer graph have the same energy, we may rewrite
this as:

Q =
∑

j

Ω je
−Ej /kT (2)

where j ranges over polymer graphs,Ω j is the number of con-
formations corresponding to polymer graphj, and Ej is the
energy of those conformations.

From a computational standpoint, the problem is not sim-
ply to find the sumQ, but the contribution of various parts to
the sum. For example, if we normalize (1) to sum to 1, the in-
dividual terms give us the probabilities of the conformations;
likewise, normalizing (2) gives the probabilities of the poly-
mer graphs. Chen and Dill wish to compute the contribution
of each energy level toQ, that is, to compute each term of the
outer summation in:

Q =
∑

E

∑

j
E j=E

Ω je−E/kT. (3)

This computation divides into two parts: for each energy level
E, we must computeΩ j , and we must perform the inner sum-
mation, which is over all polymer graphs at energy levelE.

The key to Chen and Dill’s model is that it considers re-
stricted subclasses of polymer graphs. We say that a polymer
graph isnestedif no two curved edges cross each other. For
any curved edgee, call the region bounded bye and one or
more straight edges theinterior of e. We say that a nested
polymer graph islinearly nestedif no two curved edges have
disjoint interiors. (The polymer graph in Figure 1 is nested,
but not linearly nested, because the white regions are disjoint.)
RNA secondary structures are conformations of nested poly-



Figure 1: Nested polymer graph, with one face shaded. The
straight edges represent covalent bonds, and the curved
edges represent self-contacts.

mer graphs; Chen and Dill call the conformations of linearly
nested polymer graphs “hairpin conformations.”

The restriction to nested polymer graphs allows Chen and
Dill’s model to decompose a polymer graph into elementary
components calledfacesand assume that each folds indepen-
dently of the others. For nested polymer graphs, a face is the
interior of an edge minus the interiors of the edges contained
within (e. g., the shaded region in Figure 1).

ThenΩ j , the number of conformations of the polymer graph
can be estimated as the product of the number of conforma-
tions of each of its faces, andEj , the energy of the polymer
graph, can be estimated as the sum of the energy increments
of each of its faces. Moreover, since any restrictions on what
types of faces can combine with each other are strictly local,
Chen and Dill’s algorithm can use dynamic programming to
efficiently sum over all possible combinations with a particu-
lar energy.

2. DEFINITIONS
This hierarchical decomposition of polymer graphs suggests

that nested polymer graphs might be modeled by a CFG (and
linearly nested polymer graphs by a linear CFG), following
Searls [11]. Under this interpretation, the nonterminal symbols
correspond roughly to edges, and the productions correspond
roughly to faces.

The computation ofQ is accomplished by augmenting each
production with aweight p, which we write as

A
p−→ α1 · · ·αn

where theαi are either terminals or nonterminals. The weight
of a derivation is the product of the weights of the productions
used in the derivation, and the weight of a string is the sum of
the weights of all possible derivations of the string.

If we assign the weightωe−∆E/kT to each production of the
grammar, whereω is the conformation count of the corre-
sponding face, and∆E is the energy increment of its outer
link, then the weight of the derivation corresponding to poly-
mer graphj will be Ω je−Ej/kT, and the weight of the string will
beQ.

All this can be computed by a straightforward extension of
a standard parsing algorithm like CKY. However, if we want
to group polymer graphs according to energy level and com-
pute the contribution toQ from each energy level, we need
some more machinery, borrowed from the attribute grammars
of Knuth [8].

We attach to each nonterminal symbol a set ofattributes,
and, for each occurrence of a nonterminalA in a derivation,
we give each attributev a value, which we writev(A). These

1: given wordsw1, . . . ,wn, grammarG
2: for l = 1 ton do
3: for i = 1 ton− l + 1 do
4: k = i + l
5: for all A

p−→ wi · · ·wk−1 ∈ G do
6: c[A, i, k, e(A)] = c[A, i, k, e(A)] + p
7: end for
8: for all A

p−→ wi · · ·wj1 Bwj2 · · ·wk ∈ G do
9: for all E1 ∈ V do

10: E = e(A) computed fore(B) = E1

11: c[A, i, k, E] = c[A, i, k, E] + c[B, j1, j2,E1] · p
12: end for
13: end for
14: end for
15: end for
16: return{〈E, c[S,1,n+ 1, E]〉 | E ∈ V}

Figure 2: Algorithm for linear CFG.

values are defined byattribute equationsassociated with each
productionA → α1 · · ·αn, which define each attribute ofA
in terms of the attribute values of theαi , if any.1 Define the
v-valueof a derivation rooted byS to bev(S).

Attributes provide a flexible way of computing various func-
tions on derivations, including energies. For example, for ev-
ery productionA→ α1 · · · αn, we can write the attribute equa-
tion

e(A) = ∆E +
∑

αi∈V
e(αi )

where∆E is the energy increment due to the outer link of the
corresponding face, andV is the set of nonterminals. Then the
e-value of a derivation will be the total energy of the corre-
sponding polymer graph.

Putting the weights and attributes together, then, we can ob-
tain the terms of the summation (3) simply by computing, for
eachE, the total weight of those derivations withe-valueE.

3. ALGORITHMS
To do this, we modify the CKY algorithm to use a sepa-

rate chart for each energy level, so that it can simultaneously
computeg(E)e−E/kT for all values ofE. LetV be the set of
possible energy levels of any polymer graph or subgraph, that
is, the set of possiblee-values of any derivation or subderiva-
tion. Note thatV must be finite for a given string, or else the
algorithm will not terminate. It is sufficient for the grammar
to be finitely ambiguous, which is the case for the grammars
induced from Chen and Dill’s equations (see Appendix A).

The algorithm for linear CFG is shown in Figure 2. Its run-
ning time isO(n2|G||V|), wheren is the length of the input
string and|G| is the number of productions in the grammar.
The algorithm for a general CFG in Chomsky normal form2 is
shown in Figure 3, whose running time isO(n3|G||V|2). Both
of these algorithms are implicit in Chen and Dill’s equations,

1Knuth calls attributes defined in this waysynthesized attributes. He
also discussesinherited attributes, which we do not consider here.
2In Chomsky normal form, every production is either of the form
A → BC or A → a. Every CFG (which does not generateε) can
be converted into this form. Alternatively, we could have started with
a more general algorithm instead of CKY.



1: given wordsw1, . . . ,wn, grammarG
2: for l = 1 ton do
3: for i = 1 ton− l + 1 do
4: k = i + l
5: for all A

p−→ wi · · ·wk−1 ∈ G do
6: c[A, i, k,∆E] = c[A, i, k,∆E] + p
7: end for
8: for j = i + 1 tok− 1 do
9: for all A

p−→ BC ∈ G do
10: for all E1,E2 ∈ V do
11: E = e(A) computed fore(B) = E1, e(C) = E2

12: c[A, i, k, E] = c[A, i, k, E]+
c[B, i, j,E1] · c[C, j, k, E2] · p

13: end for
14: end for
15: end for
16: end for
17: end for
18: return{〈E, c[S,1, n+ 1,E]〉 | E ∈ V}

Figure 3: Algorithm for general CFG in Chomsky normal
form (modified CKY).

but here the use of dynamic programming is made explicit.
The grammars, which can be read more or less directly off

of Chen and Dill’s equations, are shown in Figures 4 and 5
and described in more detail in Appendix A. Our main concern
here is in the size of the grammars, since the running time of
the algorithms depends on it.

For hairpin conformations, the linear CFG has productions
with arbitrarily long right-hand sides. Thus it would seem that
the parser (Figure 2) must search through an infinite number
of productions in lines 5 and 8. But in fact these productions
are instantiations of rule schemata, and if the parser only in-
stantiates each schema as necessary, line 5 only has to consider
a bounded number of productions, and line 8 only has to con-
siderO(n2) productions. This is how Chen and Dill’s equations
work as well. They analyze this algorithm as running in time
O(n4), but our analysis, which is based on a more precise al-
gorithmic description, gives a running time ofO(n4|V|).

However, theO(n2) effective grammar size is due to a single
rule schema (for G∗Mc, see Figure 4) which has the form

A
p(l)−−→ a1 · · ·akA

′ak+1 · · ·al .

If we replace this schema with the following:

A
p(l)−−→ Al

Ai 1−→ Ai−1a

Ai 1−→ aAi−1

A0 1−→ A′

the effective|G| becomesO(n) (because the indexl ranges from
0 to n). Compacting the grammar in this way improves the
running time toO(n3|V|).

For RNA secondary structures (general CFG), the grammar
size is againO(n), because it contains nonterminals of the form
K l

tc (see Figure 5), wherel ranges between 2 andn. Chen and

Dill analyze this algorithm as running in timeO(n5|V|), but
our analysis gives a running time ofO(n4|V|2).

How large is|V| for a given string? For computing energy
levels,|V| consists of linear combinations (with integer coeffi-
cients) of the∆E’s, which are drawn from a fixed, finite set. If
there is a numberx such that each∆E can be expressed as an
integer multiple ofx (e. g., if the∆E’s are all rational), then|V|
will be linear in the number of self-contacts. If the number of
self-contacts a single terminal can participate in is bounded (in
Chen and Dill’s model, it is bounded to two), then|V| ∈ O(n),
in agreement with Chen and Dill’s analysis.

This gives us a running time ofO(n4) for linear CFG (af-
ter compacting the grammar) andO(n6) for general CFG. By
coincidence, seemingly, these bounds match Chen and Dill’s
analysis. However, their analysis underestimates the contribu-
tion of |V| to the overall complexity; moreover, compacting
the linear CFG as described above is not merely a difference
of analysis, but an optimization of Chen and Dill’s original
algorithm.

4. EXTENSIONS

4.1 Other groupings
There are other ways to group the terms of the partition

function that are of interest, and attribute equations provide
enough flexibility to specify a wide variety of such groupings.
For example, Chen and Dill elsewhere [3] group conforma-
tions according to how many contacts belong to the native
structure and how many do not. In this case (assuming as be-
fore that the number of self-contacts per terminal is bounded),
|V| ∈ O(n2).

4.2 More complex conformations
To generalize to more complicated conformations than RNA

secondary structures, like pseudoknots, we must move to more
expressive formalisms than CFG, for example, tree adjoining
grammar (TAG). The principles set forth here generalize easily
to such formalisms. The main challenge lies in identifying the
elementary components of these more complicated structures
(in other words, what are the “faces” of a non-nested polymer
graph?), and finding their energy increments and conformation
counts.

Two related approaches may prove useful in this regard.
Uemura et al. [12] generate RNA pseudoknots using a tree-
adjoining grammar. A standard parsing algorithm for tree ad-
joining grammars can be modified as we have done for CKY,
giving a time complexity ofO(n6|G|2|V|2), where |G| is the
number of elementary trees. Rivas and Eddy [10] use a for-
malism calledcrossed-interaction grammar, which, when for-
malized, is equivalent to set-local multi-component TAG [13],
an extension of TAG. The actual grammar they use for gener-
ating RNA pseudoknots is intermediate in formal power be-
tween single-component TAG and set-local two-component
TAG.3 Again, their dynamic-programming algorithm [9] can
be modified as we have done for CKY, giving the same time

3These results are based on some preliminary work of Chiang and
Joshi and several discussions at the Workshop on Language Modeling
of Biological Data at the University of Pennsylvania in February 2001,
and were presented by Joshi in an invited talk at the Pacific Sympo-
sium on Biocomputing [5].



complexity as TAG:O(n6|G||V|2), where|G| is the number of
productions.

Both of these approaches decompose conformations with
crossing links into elementary structures and assign energy in-
crements to each structure. However, these energy increments
have not all been experimentally determined so far, so that
both approaches must make approximations for pseudoknots.
It also remains to be seen whether conformation counts can
be assigned to such elementary structures that will give good
estimates of overall conformation counts.

5. CONCLUSION
In summary, we have given a formally and computationally

more precise account of Chen and Dill’s method for computing
partition functions of double-stranded chain molecules. From
a computational standpoint, this account clarifies the structure
of the algorithm, leading to a revised complexity analysis and
an optimization for the linear case (hairpin conformations).
From a formal standpoint, this account separates the princi-
ples of the model from the particular restrictions it chooses,
laying a foundation for relaxing those restrictions to handle
more complex conformations.
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APPENDIX

A. GRAMMARS
The grammars (that is, rule schemata for the grammars)

for hairpin conformations and RNA secondary structures are
shown in Figures 4 and 5, respectively. Thewi are terminal
symbols, and S is the start symbol. The Gtc, G∗tc, and Kl

tc are
nonterminals; these symbols and their subscripts are explained
by Chen and Dill [2].

The weight of each production isωe−∆E/kT, whereω and
∆E are as listed next to the grammars, and each production
A→ α1 · · ·αn has the attribute equations

E(A) = ∆E +
∑

αi∈V
E(αi )

x =


x(α1) if α1 ∈ V

α1 otherwise

y =


y(αn) if αn ∈ V

αn otherwise

where, again,∆E is as listed next to the grammars. The pur-
pose of thex andy attributes is to keep track of the leftmost
and rightmost symbols in the yield of each nonterminal.

In both grammars,St(l)c1c2, (Y t1t2)c1c2, ωc, α, and∆E(x, y)
are parameters which are either experimentally determined or
determined by the underlying two-dimensional lattice model
for counting conformations, as explained by Chen and Dill [2].
Note that because the weight of a production depends on∆E,
and∆E depends on the attributesx andy, the weights depend
on the attributes, which is not strictly allowed under our defini-
tions. Sincex andy are drawn from a finite set, it would be pos-
sible to write these attributes into the grammar, but this would
complicate the grammar unnecessarily. For the parsing algo-
rithms given here, there is no problem with letting the weights
depend on the attributes.

In the second grammar, the productions we have given for
KL

LR,c when l > 2 do not conform exactly to Chen and Dill’s
equations. Their equations are a simplification from a previ-
ous version of their model [1], and the productions we have
given here are closer to the older equations. It is possible to
reproduce the newer equations exactly, but for us it would be
slightly more complicated.



Production ω ∆E

S→ Gtc 1 0
Gtc → G∗tc ωc 0

G∗Lc → G∗t′c2
wj′+1 · · ·wj SL( j − j′ + 2)cc1 ∆E(x, y) (YLt′ )c1c2 = 1

G∗Mc → wi · · ·wi′−1G
∗
t′c2

wj′+1 · · ·wj SM( j − j′ + i′ − i + 2)cc1 ∆E(x, y) (YMt′ )c1c2 = 1
G∗Rc → wi · · ·wi′−1G∗t′c2

SR(i′ − i + 2)cc1 ∆E(x, y) YRt′ )c1c2 = 1

G∗Ic → wi · · ·wj SI ( j − i + 1)c ∆E(x, y)

t, t′ ∈ {L,M,R, I}
c, c1, c2 ∈ {1,2,3, 4}

Figure 4: Rule schemata for grammar for hairpin conformations.

Production ω ∆E

S→ G0c | G1c | G2c 1 0

G0c → G0cwj | G1cwj α 0
G1c → G∗Lc | G∗Mc | G0cG

∗
Lc | G0cG

∗
Mc | G1cG

∗
Mc 1 0

G2c → G∗Rc | G∗LR,c | G0cG
∗
Rc | G0cG

∗
LR,c | G1cG

∗
Rc 1 0

G∗Ic → wi · · ·wj SI ( j − i + 1)c ∆E(x, y)

G∗tc → K l
t′c2

St(l)cc1 ∆E(x, y) l > 2, (Y tM)c1c2 = 1, t , I

K l
Ic → wi · · ·wi+l−1 1 0

K l
Lc → K l−1

Lc wj | K l−1
LR,cwj 1 0

K l
Mc → K l−1

Mcwj | K l−1
Rc wj 1 0

K l
Rc → wiK l−1

Rc | wiK l−1
LR,c 1 0

K l
LR,c → K l−1

LR,c1
G∗t′c2

1 0 l > 2, (YMM )cc2 = 1, t′ < {L,LR}
K l

LR,c → K l−1
Lc1

G∗t′c2
1 0 l > 2, (YMM )cc2 = 1

K2
LR,c → G∗Mc | G∗Ic 1 0

l > 0

t, t′ ∈ {L,M,R,LR, I}
c, c1, c2 ∈ {1,2,3, 4}

Figure 5: Rule schemata for grammar for RNA secondary structures.


