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Synchronous grammars
are a way of simultaneously generating 

pairs of recursively related strings (or trees)

Synchronous 
grammar

w wʹ′
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Synchronous grammars

Synchronous 
grammar

for i := 1 to 10 do 
begin
 n := n + i
end

mov ax, 1
loop: add bx, ax
cmp ax, 10
jle loop

were originally invented for 
programming language compilation
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Synchronous grammars

Synchronous 
grammar

I open the box watashi wa hako wo akemasu

have been used for syntax-based 
machine translation

4



Synchronous grammars

Synchronous 
grammar

I open the box openʹ′(meʹ′, boxʹ′)

have been proposed as a way of doing 
semantic interpretation

5



Synchronous grammars
can do much fancier transformations 

than finite-state methods

shoonen ga gakusei ga sensei ga odotta to itta to hanashita

The boy stated that the student said that the teacher danced

boy student teacher danced statedsaid thatthat
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Synchronous grammars
can do much fancier transformations 

than finite-state methods

…dat Jan Piet de kinderen zag helpen zwemmen

…that John saw Peter help the children swim

John Peter the children saw swimhelp
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Overview

Definitions

Properties

Algorithms

Extensions
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Definitions
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Synchronous CFGs

S→ NP1 VP2

NP→ I

NP→ the box

VP→ V1 NP2

V→ open

S→ NP1 VP2

NP→ watashi wa

NP→ hako wo

VP→ NP2 V1

V→ akemasu
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Synchronous CFGs

S→ NP1 VP2, NP1 VP2

NP→ I, watashi wa

NP→ the box, hako wo

VP→ V1 NP2, NP2 V1

V→ open, akemasu

S→ NP1 VP2, NP1 VP2

NP→ I, watashi wa

NP→ the box, hako wo

VP→ V1 NP2, NP2 V1

V→ open, akemasu

11



NP2 VP3 NP2 VP3

S1 S1S1

VP3VP3

V4 NP5 V4NP5

NP2NP2

I watashi wa

Synchronous CFGs

V4V4

open akemasu

NP5NP5

the box hako wo

S1
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Other notations

(VP → V1 NP2 , VP → NP2 V1)

VP → 〈V NP〉 Inversion transduction 
grammar (Wu)

VP → (V1 NP2 , NP2 V1)
Syntax directed translation 
schema (Aho and Ullman; 

Lewis and Stearns)
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Limitations of synchronous 
CFGs

S

NP VP

V NPJohn

misses Mary

S

NP VP

V

NP

Marie

manque

Jean

PP

P

à
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One solution

S1

NP2 NP3

John

misses

Mary

S1

NP3 NP2

Marie

manque

Jean

à
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Synchronous tree substitution 
grammars

S

NP1 VP

V NP2

John

misses

S

NP2 VP

V

NP1manque
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NPNP

Synchronous tree substitution 
grammars

S

VP

V NP

misses
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VP
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Mary
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John
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Limitations of synchronous 
TSGs

…dat Jan Piet de kinderen zag helpen zwemmen

…that John saw Peter help the children swim

This pattern extends to n nouns and n verbs
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S

Limitations of synchronous 
TSGs

NPNP

S

VP

V

saw

S

VP

V

zag

S

NP

Jan

NP

John

1

2

1

2

Peter help the children swim

Piet de kinderen helpen zwemmen

? ?

19



Synchronous TAG
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Synchronous TAGs &
multicomponent TAGs

Synchronous TAG 

(Shieber, 1994) ≈ 

set-local 2-component TAG

Synchronous TAG 

(Shieber & Schabes, 1990) ≈

non-local 2-component TAG
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Properties
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Chomsky normal form

X → Y Z

X → a
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Chomsky normal form

A → (((B  C) D) E) F rank 5
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Chomsky normal form

A → [[[B  C] D] E] F

A→ V1 F

V1→ V2 E

V2→ V3 D

V3→ B C

rank 5

rank 2
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A hierarchy of synchronous 
CFGs

1-SCFG ⊊ 2-SCFG = 3-SCFG ⊊ 4-SCFG ⊊ …
=
ITG

(Wu, 1997)

=

1-CFG ⊊ 2-CFG = 3-CFG = 4-CFG = …
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Synchronous CNF?

A → (B1 [C2  D3], [C2  D3] B1) rank 3
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Synchronous CNF?

A → (B1 [C2  D3], [C2  D3] B1) rank 3

A→ (B1 V12 , V12 B1)

V1→ (C1 D2 , C1 D2)
rank 2
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Synchronous CNF?

A → (B1 C2 D3 E4, C2 E4 B1 D3)

A → ([B1 C2] D3 E4, [C2 E4 B1] D3)

A → (B1 [C2 D3] E4, [C2 E4 B1 D3])

A → (B1 C2 [D3 E4], C2 [E4 B1 D3])

rank 4
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Synchronous CNF?

1 2 3 4

1 B
2 C
3 D
4 E

1 2 3

1 B
2 C
3 D

A → (B1 C2  D3, C2 D3 B1)

A → (B1 C2 D3 E4, C2 E4 B1 D3)
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Inversion Transduction 
Grammar

1 2 3 4

1 B
2 C
3 D
4 E

A → (B1 [C2 [D3 E4]], [[E4 D3] C2] B1)
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A hierarchy of synchronous 
CFGs

1-SCFG ⊊ 2-SCFG = 3-SCFG ⊊ 4-SCFG ⊊ …
=
ITG

(Wu, 1997)

=

1-CFG ⊊ 2-CFG = 3-CFG = 4-CFG = …
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A hierarchy of synchronous 
TAGs

1-STAG ⊊ 2-STAG = 3-STAG ⊊ 4-STAG ⊊ …
=

?
=

1-TAG ⊊ 2-TAG = 3-TAG = 4-TAG = …

weakly
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Algorithms
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Overview

Translation

Bitext parsing

39



I

Review: CKY

open the boxI

NP

V

open

S→ NP VP

NP→ I

NP→ the box

VP→ V NP

V→ open
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I

Review: CKY

open the boxI

NP

NP

the box

V

open

S→ NP VP

NP→ I

NP→ the box

VP→ V NP

V→ open
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V NP

I

Review: CKY

open the box

NP

NPV

VP

S→ NP VP

NP→ I

NP→ the box

VP→ V NP

V→ open
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NP VP

I

Review: CKY

open the box

NP VP

SS→ NP VP

NP→ I

NP→ the box

VP→ V NP

V→ open
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I

Review: CKY

open the box

SS→ NP VP

NP→ I

NP→ the box

VP→ V NP

V→ open
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Review: CKY

open the box

NP3V2

VP4

V2 NP3

O(n3) ways of matching
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Translation

S

NP1 VP2

V3 NP4

open the box

I

I open the box

O(n3)

46



watashi wa hako wo akemasu

O(n)

watashi wa

NP1

V3NP4

VP2

hako wo

NP4

akemasu

V3

Translation

S S

NP1 VP2

V3 NP4

open the box

I

I open the box

O(n3)

O(n)
NP1 VP2

S
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Translation

B C D E

A

What about…

O(n5) ways of combining?
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Translation

B C D E

A

V2

V1
B C D E

A

C E D B

Aflatten

O(n)
translateO(n)

parse
O(n3)
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Bitext parsing

I open the box

S S

NP1 VP2 NP1 VP2

V3 NP4 V3NP4

open akemasuthe box hako wo

I watashi wa

O(n?)

watashi wa hako wo akemasu
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V3 V3

open akemasu

NP4 NP4

the box hako wo

NP1 NP1

I watashi waopen akemasuthe box hako woI watashi wa

Bitext parsing

Consider rank-2 synchronous CFGs for now
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V3 V3

open akemasu

NP4 NP4

the box hako wo

NP1 NP1

I watashi wa

Bitext parsing

VP2 VP2

V3 NP4 V3NP4
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open akemasuthe box hako wo

NP1 NP1

I watashi wa

Bitext parsing

VP2 VP2

S S

NP1 VP2 NP1 VP2
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open akemasuthe box hako woI watashi wa

Bitext parsing

S S
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V3 V3

open akemasu

NP4 NP4

the box hako wo

Bitext parsing

VP2 VP2

V3 NP4 V3NP4

O(n6) ways of matching
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Bitext parsing

B1 C2 D3 E4 C2 E4 B1 D3

A A

O(n10) ways of combining!
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Summary so far

Translation: essentially parsing on the 
source side, O(n3)

Bitext parsing: polynomial in n but worst-
case exponential in rank, O(n2(r+1))
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Parsing as intersection

Translation is like intersecting with a 
finite-state automaton on source side

Bitext parsing is like intersecting with 
FSAs on both sides     

I open the box

I open the box watashi wa hako wo akemasu
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Translation with 
a language model

I open the box

is also like intersecting with 
FSAs on both sides

input string

n-gram language model
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Extensions
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Synchronous TAGs &
multicomponent TAGs

Synchronous TAG (Shieber, 1994) ≈ 

set-local 2-component TAG
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Synchronous TAGs &
multicomponent TAGs

Synchronous set-local k-component 
TAG

≈ set-local 2k-component TAG
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Synchronous TAGs &
multicomponent TAGs

Set-local k-component TAG : set-local 
kʹ′-component TAG

≈ set-local (k+kʹ′)-component TAG
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Synchronous LCFRS

rank = “how many things a rule 
combines”

fanout = “how many pieces does each 
thing have” (CFG = 1, TAG = 2)

synchronize any (r, f ) and (r, f ʹ′) 
LCFRSs. Bitext parsing: O(n(r+1)(f+f ʹ′))
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Hyperedge replacement 
grammars

Parsing with Hyperedge Replacement Graph Grammars

1 Introduction
Drewes et al. (1997) present two polynomial-time recog-
nition algorithms for HRGs. We provide a more practical
complexity analysis of the first of these algorithms, and
show how to decrease the degree of the polynomial by
using tree decompositions, following Gildea (2011).

2 Formalism
Definition 1. A (edge-labeled) hypergraph over C is a
tuple (V, E, `), where V is a finite set of nodes, E ✓ V⇤
is a finite set of edges, and ` : E ! C assigns labels to
edges.

We will also make use of what we call hypergraph
fragments, which are analogous to the auxiliary trees of
tree-adjoining grammars.

Definition 2. A hypergraph fragment is a tuple
hV, E, `, Xi, where hV, E, `i is a hypergraph and X 2 V⇤
is a sequence of external nodes.

For brevity, we will use the terms graph and hyper-
graph interchangeably.

If H is a graph, e = (v1 · · · vk) is an edge, and R is a
graph fragment with r external nodes, we write H[e/R]
for the graph formed by removing e from H, making an
isomorphic copy of R, and identifying vi with (the copy
of) XR,i for i = 1, . . . , r.

Definition 3. A hyperedge replacement graph grammar
(HRG) is a tuple hN, T, P, S i, where

• N is a finite set of nonterminal symbols

• T is a finite set of terminal symbols

• P is a set of rules of the form (A! R), where A 2 N
and R is a graph fragment hVR, ER, `R, XRi
• S 2 N is a distinguished start symbol

If H = hV, E, `i is a graph and G = hN, T, P, S i is a HRG,
then for any production (A ! R) 2 P and an edge e =
(v1 · · · vk) 2 E such that `(e) = A, we write H )G H0 i↵

H0 = H[e/R]. We write )⇤G for the reflexive, transitive
closure of)G. Define L(G) = {H | S )⇤G H}.

We say that a HRG is growing if each of its productions
has at least one non-external node or at least one edge.

In the examples below, we use only unary and binary
edges. We notate a unary edge connecting to node v with
label c by simply writing the label c beneath v

✓
c

◆
. A

binary edge e = (v1v2) is drawn with v1 on top and v2 on
the bottom. In graph fragments, external nodes are drawn
as black circles ( ). If a graph fragment has two external
nodes X = (v1v2), v1 is drawn on top, and v2 is drawn on
the bottom.

Example. Below is a HRG with start symbol T :

T !

E

T
want0

in
sta

nc
e dom

ain
agent

T !

see0

in
sta

nc
e agent E !

me0

instance
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external node
(like a foot node)
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Hyperedge replacement 
grammars

The derivation for “I want to see” is:

T )

E

T
want0

in
sta

nc
e dom

ain
agent

)

see0E

ag
en

t

instance

want0

ins
tan

ce domain

ag
en

t

)

see0

me0

instance

ag
en

t instance

want0

ins
tan

ce domain
ag

en
t

3 Parsing
We present each parsing algorithm as a deductive system
(Shieber et al., 1995).

Let H be the input graph, which we assume to be
connected.1 Just as CKY deals with substrings (i, j] of
the input, so these algorithms deal with (edge-induced)
subgraphs I of the input. In CKY, the two endpoints i
and j completely specify the recognized part of the input,
wi+1 · · ·wj. Likewise, we do not need to store all of I ex-
plicitly. Define a boundary node of I ✓ H to be a node in
I which is either an external node or a node with an edge
in H \ I, and define a boundary edge of I to be an edge in
I which is adjacent to a boundary node. Then, to specify
I, it su�ces to store the boundary nodes and edges of I.

If H has n nodes with maximum degree d, then the
number of possible subgraphs of H with r external nodes
is in O((2dn)r).

3.1 Original version
We first present an algorithm very similar to that of
Drewes et al. (1997, Algorithm 2.7.4). The items have
the form [A! R, I, �], where

• (A! R) is a production of G

• I is an edge-induced subgraph of H

• � is a bijection between the boundary nodes of R and
those of I.

1The extension to disconnected graphs is not di�cult but increases
the complexity of the algorithm.

The goal item is:

[S ! R,H, ;]
where R has no external nodes. The sole inference rule is
(for f � 0):

[B1 ! Q1, J1, �1] · · · [Bf ! Qf , J f , � f ]
[A! R, I, {ei 7! �i(ext(Qi))}]

where (A! R) 2 P, e1, . . . , e f are the nonterminal edges
of R, and I is isomorphic to R[e1/J1, . . . , e f /J f ]. not sure if this

is right...must
check full �

The time complexity of this algorithm is in
O((2dn)r( f+1)).

3.2 Binarization
Next we present a version of the algorithm that is bina-
rized in the sense that it applies rules incrementally rather
than all at once.

Assume, for each production (A ! R) 2 P, some
ordering on the edges of R. Let ER,i be the ith edge in
this ordering, and let ER,i be the subgraph induced by
{ER,1, . . . ER,i}.

The items have the form [A! R, i, I, �], where

• (A! R) is a production of G

• 0  i  |ER|
• I is an edge-induced subgraph of H

• � is a bijection between the boundary nodes of ER,i

and those of I.

The goal item is:

[S ! R, |ER|,H, ;]
where R has no external nodes. The inference rules are

• Axiom

[A! R, 0, ;, ;]
where (A! R) 2 P.

• Shift

[A! R, i, I, �]
h
A! R, i + 1, I [ {e}, � [ {ER,i+1, j 7! e j}

i

where ER,i+1 and e 2 EH are both labeled with the fix this notation
same terminal symbol a.

• Complete

[A! R, i, I, �] [B! Q, |EQ|, J, ]
h
A! R, i + 1, I [ J, � [ {ER,i+1, j 7!  (XQ, j)}

i

where ER,i+1 is labeled with nonterminal B.
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then for any production (A ! R) 2 P and an edge e =
(v1 · · · vk) 2 E such that `(e) = A, we write H )G H0 i↵

H0 = H[e/R]. We write )⇤G for the reflexive, transitive
closure of)G. Define L(G) = {H | S )⇤G H}.

We say that a HRG is growing if each of its productions
has at least one non-external node or at least one edge.

In the examples below, we use only unary and binary
edges. We notate a unary edge connecting to node v with
label c by simply writing the label c beneath v

✓
c

◆
. A

binary edge e = (v1v2) is drawn with v1 on top and v2 on
the bottom. In graph fragments, external nodes are drawn
as black circles ( ). If a graph fragment has two external
nodes X = (v1v2), v1 is drawn on top, and v2 is drawn on
the bottom.

Example. Below is a HRG with start symbol T :
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3 Parsing
We present each parsing algorithm as a deductive system
(Shieber et al., 1995).

Let H be the input graph, which we assume to be
connected.1 Just as CKY deals with substrings (i, j] of
the input, so these algorithms deal with (edge-induced)
subgraphs I of the input. In CKY, the two endpoints i
and j completely specify the recognized part of the input,
wi+1 · · ·wj. Likewise, we do not need to store all of I ex-
plicitly. Define a boundary node of I ✓ H to be a node in
I which is either an external node or a node with an edge
in H \ I, and define a boundary edge of I to be an edge in
I which is adjacent to a boundary node. Then, to specify
I, it su�ces to store the boundary nodes and edges of I.

If H has n nodes with maximum degree d, then the
number of possible subgraphs of H with r external nodes
is in O((2dn)r).

3.1 Original version
We first present an algorithm very similar to that of
Drewes et al. (1997, Algorithm 2.7.4). The items have
the form [A! R, I, �], where

• (A! R) is a production of G

• I is an edge-induced subgraph of H

• � is a bijection between the boundary nodes of R and
those of I.

1The extension to disconnected graphs is not di�cult but increases
the complexity of the algorithm.

The goal item is:

[S ! R,H, ;]
where R has no external nodes. The sole inference rule is
(for f � 0):

[B1 ! Q1, J1, �1] · · · [Bf ! Qf , J f , � f ]
[A! R, I, {ei 7! �i(ext(Qi))}]

where (A! R) 2 P, e1, . . . , e f are the nonterminal edges
of R, and I is isomorphic to R[e1/J1, . . . , e f /J f ]. not sure if this

is right...must
check full �

The time complexity of this algorithm is in
O((2dn)r( f+1)).

3.2 Binarization
Next we present a version of the algorithm that is bina-
rized in the sense that it applies rules incrementally rather
than all at once.

Assume, for each production (A ! R) 2 P, some
ordering on the edges of R. Let ER,i be the ith edge in
this ordering, and let ER,i be the subgraph induced by
{ER,1, . . . ER,i}.

The items have the form [A! R, i, I, �], where

• (A! R) is a production of G

• 0  i  |ER|
• I is an edge-induced subgraph of H

• � is a bijection between the boundary nodes of ER,i

and those of I.

The goal item is:

[S ! R, |ER|,H, ;]
where R has no external nodes. The inference rules are

• Axiom

[A! R, 0, ;, ;]
where (A! R) 2 P.

• Shift

[A! R, i, I, �]
h
A! R, i + 1, I [ {e}, � [ {ER,i+1, j 7! e j}

i

where ER,i+1 and e 2 EH are both labeled with the fix this notation
same terminal symbol a.

• Complete

[A! R, i, I, �] [B! Q, |EQ|, J, ]
h
A! R, i + 1, I [ J, � [ {ER,i+1, j 7!  (XQ, j)}

i

where ER,i+1 is labeled with nonterminal B.
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Parsing with Hyperedge Replacement Graph Grammars

1 Introduction
Drewes et al. (1997) present two polynomial-time recog-
nition algorithms for HRGs. We provide a more practical
complexity analysis of the first of these algorithms, and
show how to decrease the degree of the polynomial by
using tree decompositions, following Gildea (2011).

2 Formalism
Definition 1. A (edge-labeled) hypergraph over C is a
tuple (V, E, `), where V is a finite set of nodes, E ✓ V⇤
is a finite set of edges, and ` : E ! C assigns labels to
edges.

We will also make use of what we call hypergraph
fragments, which are analogous to the auxiliary trees of
tree-adjoining grammars.

Definition 2. A hypergraph fragment is a tuple
hV, E, `, Xi, where hV, E, `i is a hypergraph and X 2 V⇤
is a sequence of external nodes.

For brevity, we will use the terms graph and hyper-
graph interchangeably.

If H is a graph, e = (v1 · · · vk) is an edge, and R is a
graph fragment with r external nodes, we write H[e/R]
for the graph formed by removing e from H, making an
isomorphic copy of R, and identifying vi with (the copy
of) XR,i for i = 1, . . . , r.

Definition 3. A hyperedge replacement graph grammar
(HRG) is a tuple hN, T, P, S i, where

• N is a finite set of nonterminal symbols

• T is a finite set of terminal symbols

• P is a set of rules of the form (A! R), where A 2 N
and R is a graph fragment hVR, ER, `R, XRi
• S 2 N is a distinguished start symbol

If H = hV, E, `i is a graph and G = hN, T, P, S i is a HRG,
then for any production (A ! R) 2 P and an edge e =
(v1 · · · vk) 2 E such that `(e) = A, we write H )G H0 i↵

H0 = H[e/R]. We write )⇤G for the reflexive, transitive
closure of)G. Define L(G) = {H | S )⇤G H}.

We say that a HRG is growing if each of its productions
has at least one non-external node or at least one edge.

In the examples below, we use only unary and binary
edges. We notate a unary edge connecting to node v with
label c by simply writing the label c beneath v

✓
c

◆
. A

binary edge e = (v1v2) is drawn with v1 on top and v2 on
the bottom. In graph fragments, external nodes are drawn
as black circles ( ). If a graph fragment has two external
nodes X = (v1v2), v1 is drawn on top, and v2 is drawn on
the bottom.

Example. Below is a HRG with start symbol T :
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The derivation for “I want to see” is:
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3 Parsing
We present each parsing algorithm as a deductive system
(Shieber et al., 1995).

Let H be the input graph, which we assume to be
connected.1 Just as CKY deals with substrings (i, j] of
the input, so these algorithms deal with (edge-induced)
subgraphs I of the input. In CKY, the two endpoints i
and j completely specify the recognized part of the input,
wi+1 · · ·wj. Likewise, we do not need to store all of I ex-
plicitly. Define a boundary node of I ✓ H to be a node in
I which is either an external node or a node with an edge
in H \ I, and define a boundary edge of I to be an edge in
I which is adjacent to a boundary node. Then, to specify
I, it su�ces to store the boundary nodes and edges of I.

If H has n nodes with maximum degree d, then the
number of possible subgraphs of H with r external nodes
is in O((2dn)r).

3.1 Original version
We first present an algorithm very similar to that of
Drewes et al. (1997, Algorithm 2.7.4). The items have
the form [A! R, I, �], where

• (A! R) is a production of G

• I is an edge-induced subgraph of H

• � is a bijection between the boundary nodes of R and
those of I.

1The extension to disconnected graphs is not di�cult but increases
the complexity of the algorithm.

The goal item is:

[S ! R,H, ;]
where R has no external nodes. The sole inference rule is
(for f � 0):

[B1 ! Q1, J1, �1] · · · [Bf ! Qf , J f , � f ]
[A! R, I, {ei 7! �i(ext(Qi))}]

where (A! R) 2 P, e1, . . . , e f are the nonterminal edges
of R, and I is isomorphic to R[e1/J1, . . . , e f /J f ]. not sure if this

is right...must
check full �

The time complexity of this algorithm is in
O((2dn)r( f+1)).

3.2 Binarization
Next we present a version of the algorithm that is bina-
rized in the sense that it applies rules incrementally rather
than all at once.

Assume, for each production (A ! R) 2 P, some
ordering on the edges of R. Let ER,i be the ith edge in
this ordering, and let ER,i be the subgraph induced by
{ER,1, . . . ER,i}.

The items have the form [A! R, i, I, �], where

• (A! R) is a production of G

• 0  i  |ER|
• I is an edge-induced subgraph of H

• � is a bijection between the boundary nodes of ER,i

and those of I.

The goal item is:

[S ! R, |ER|,H, ;]
where R has no external nodes. The inference rules are

• Axiom

[A! R, 0, ;, ;]
where (A! R) 2 P.

• Shift

[A! R, i, I, �]
h
A! R, i + 1, I [ {e}, � [ {ER,i+1, j 7! e j}

i

where ER,i+1 and e 2 EH are both labeled with the fix this notation
same terminal symbol a.

• Complete

[A! R, i, I, �] [B! Q, |EQ|, J, ]
h
A! R, i + 1, I [ J, � [ {ER,i+1, j 7!  (XQ, j)}

i

where ER,i+1 is labeled with nonterminal B.

The derivation for “I want to see” is:
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We present each parsing algorithm as a deductive system
(Shieber et al., 1995).

Let H be the input graph, which we assume to be
connected.1 Just as CKY deals with substrings (i, j] of
the input, so these algorithms deal with (edge-induced)
subgraphs I of the input. In CKY, the two endpoints i
and j completely specify the recognized part of the input,
wi+1 · · ·wj. Likewise, we do not need to store all of I ex-
plicitly. Define a boundary node of I ✓ H to be a node in
I which is either an external node or a node with an edge
in H \ I, and define a boundary edge of I to be an edge in
I which is adjacent to a boundary node. Then, to specify
I, it su�ces to store the boundary nodes and edges of I.

If H has n nodes with maximum degree d, then the
number of possible subgraphs of H with r external nodes
is in O((2dn)r).

3.1 Original version
We first present an algorithm very similar to that of
Drewes et al. (1997, Algorithm 2.7.4). The items have
the form [A! R, I, �], where

• (A! R) is a production of G

• I is an edge-induced subgraph of H

• � is a bijection between the boundary nodes of R and
those of I.

1The extension to disconnected graphs is not di�cult but increases
the complexity of the algorithm.

The goal item is:

[S ! R,H, ;]
where R has no external nodes. The sole inference rule is
(for f � 0):

[B1 ! Q1, J1, �1] · · · [Bf ! Qf , J f , � f ]
[A! R, I, {ei 7! �i(ext(Qi))}]

where (A! R) 2 P, e1, . . . , e f are the nonterminal edges
of R, and I is isomorphic to R[e1/J1, . . . , e f /J f ]. not sure if this

is right...must
check full �

The time complexity of this algorithm is in
O((2dn)r( f+1)).

3.2 Binarization
Next we present a version of the algorithm that is bina-
rized in the sense that it applies rules incrementally rather
than all at once.

Assume, for each production (A ! R) 2 P, some
ordering on the edges of R. Let ER,i be the ith edge in
this ordering, and let ER,i be the subgraph induced by
{ER,1, . . . ER,i}.

The items have the form [A! R, i, I, �], where

• (A! R) is a production of G

• 0  i  |ER|
• I is an edge-induced subgraph of H

• � is a bijection between the boundary nodes of ER,i

and those of I.

The goal item is:

[S ! R, |ER|,H, ;]
where R has no external nodes. The inference rules are

• Axiom

[A! R, 0, ;, ;]
where (A! R) 2 P.

• Shift

[A! R, i, I, �]
h
A! R, i + 1, I [ {e}, � [ {ER,i+1, j 7! e j}

i

where ER,i+1 and e 2 EH are both labeled with the fix this notation
same terminal symbol a.

• Complete

[A! R, i, I, �] [B! Q, |EQ|, J, ]
h
A! R, i + 1, I [ J, � [ {ER,i+1, j 7!  (XQ, j)}
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where ER,i+1 is labeled with nonterminal B.
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3 Parsing
We present each parsing algorithm as a deductive system
(Shieber et al., 1995).

Let H be the input graph, which we assume to be
connected.1 Just as CKY deals with substrings (i, j] of
the input, so these algorithms deal with (edge-induced)
subgraphs I of the input. In CKY, the two endpoints i
and j completely specify the recognized part of the input,
wi+1 · · ·wj. Likewise, we do not need to store all of I ex-
plicitly. Define a boundary node of I ✓ H to be a node in
I which is either an external node or a node with an edge
in H \ I, and define a boundary edge of I to be an edge in
I which is adjacent to a boundary node. Then, to specify
I, it su�ces to store the boundary nodes and edges of I.

If H has n nodes with maximum degree d, then the
number of possible subgraphs of H with r external nodes
is in O((2dn)r).

3.1 Original version
We first present an algorithm very similar to that of
Drewes et al. (1997, Algorithm 2.7.4). The items have
the form [A! R, I, �], where

• (A! R) is a production of G

• I is an edge-induced subgraph of H

• � is a bijection between the boundary nodes of R and
those of I.

1The extension to disconnected graphs is not di�cult but increases
the complexity of the algorithm.

The goal item is:

[S ! R,H, ;]
where R has no external nodes. The sole inference rule is
(for f � 0):

[B1 ! Q1, J1, �1] · · · [Bf ! Qf , J f , � f ]
[A! R, I, {ei 7! �i(ext(Qi))}]

where (A! R) 2 P, e1, . . . , e f are the nonterminal edges
of R, and I is isomorphic to R[e1/J1, . . . , e f /J f ]. not sure if this

is right...must
check full �

The time complexity of this algorithm is in
O((2dn)r( f+1)).

3.2 Binarization
Next we present a version of the algorithm that is bina-
rized in the sense that it applies rules incrementally rather
than all at once.

Assume, for each production (A ! R) 2 P, some
ordering on the edges of R. Let ER,i be the ith edge in
this ordering, and let ER,i be the subgraph induced by
{ER,1, . . . ER,i}.

The items have the form [A! R, i, I, �], where

• (A! R) is a production of G

• 0  i  |ER|
• I is an edge-induced subgraph of H

• � is a bijection between the boundary nodes of ER,i

and those of I.

The goal item is:

[S ! R, |ER|,H, ;]
where R has no external nodes. The inference rules are

• Axiom

[A! R, 0, ;, ;]
where (A! R) 2 P.

• Shift

[A! R, i, I, �]
h
A! R, i + 1, I [ {e}, � [ {ER,i+1, j 7! e j}
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where ER,i+1 and e 2 EH are both labeled with the fix this notation
same terminal symbol a.

• Complete

[A! R, i, I, �] [B! Q, |EQ|, J, ]
h
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3 Parsing
We present each parsing algorithm as a deductive system
(Shieber et al., 1995).

Let H be the input graph, which we assume to be
connected.1 Just as CKY deals with substrings (i, j] of
the input, so these algorithms deal with (edge-induced)
subgraphs I of the input. In CKY, the two endpoints i
and j completely specify the recognized part of the input,
wi+1 · · ·wj. Likewise, we do not need to store all of I ex-
plicitly. Define a boundary node of I ✓ H to be a node in
I which is either an external node or a node with an edge
in H \ I, and define a boundary edge of I to be an edge in
I which is adjacent to a boundary node. Then, to specify
I, it su�ces to store the boundary nodes and edges of I.

If H has n nodes with maximum degree d, then the
number of possible subgraphs of H with r external nodes
is in O((2dn)r).

3.1 Original version
We first present an algorithm very similar to that of
Drewes et al. (1997, Algorithm 2.7.4). The items have
the form [A! R, I, �], where

• (A! R) is a production of G

• I is an edge-induced subgraph of H

• � is a bijection between the boundary nodes of R and
those of I.

1The extension to disconnected graphs is not di�cult but increases
the complexity of the algorithm.

The goal item is:

[S ! R,H, ;]
where R has no external nodes. The sole inference rule is
(for f � 0):

[B1 ! Q1, J1, �1] · · · [Bf ! Qf , J f , � f ]
[A! R, I, {ei 7! �i(ext(Qi))}]

where (A! R) 2 P, e1, . . . , e f are the nonterminal edges
of R, and I is isomorphic to R[e1/J1, . . . , e f /J f ]. not sure if this

is right...must
check full �

The time complexity of this algorithm is in
O((2dn)r( f+1)).

3.2 Binarization
Next we present a version of the algorithm that is bina-
rized in the sense that it applies rules incrementally rather
than all at once.

Assume, for each production (A ! R) 2 P, some
ordering on the edges of R. Let ER,i be the ith edge in
this ordering, and let ER,i be the subgraph induced by
{ER,1, . . . ER,i}.

The items have the form [A! R, i, I, �], where

• (A! R) is a production of G

• 0  i  |ER|
• I is an edge-induced subgraph of H

• � is a bijection between the boundary nodes of ER,i

and those of I.

The goal item is:
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where (A! R) 2 P.

• Shift
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h
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where ER,i+1 and e 2 EH are both labeled with the fix this notation
same terminal symbol a.

• Complete

[A! R, i, I, �] [B! Q, |EQ|, J, ]
h
A! R, i + 1, I [ J, � [ {ER,i+1, j 7!  (XQ, j)}
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where ER,i+1 is labeled with nonterminal B.

Parsing with Hyperedge Replacement Graph Grammars

1 Introduction
Drewes et al. (1997) present two polynomial-time recog-
nition algorithms for HRGs. We provide a more practical
complexity analysis of the first of these algorithms, and
show how to decrease the degree of the polynomial by
using tree decompositions, following Gildea (2011).

2 Formalism
Definition 1. A (edge-labeled) hypergraph over C is a
tuple (V, E, `), where V is a finite set of nodes, E ✓ V⇤
is a finite set of edges, and ` : E ! C assigns labels to
edges.

We will also make use of what we call hypergraph
fragments, which are analogous to the auxiliary trees of
tree-adjoining grammars.

Definition 2. A hypergraph fragment is a tuple
hV, E, `, Xi, where hV, E, `i is a hypergraph and X 2 V⇤
is a sequence of external nodes.

For brevity, we will use the terms graph and hyper-
graph interchangeably.

If H is a graph, e = (v1 · · · vk) is an edge, and R is a
graph fragment with r external nodes, we write H[e/R]
for the graph formed by removing e from H, making an
isomorphic copy of R, and identifying vi with (the copy
of) XR,i for i = 1, . . . , r.

Definition 3. A hyperedge replacement graph grammar
(HRG) is a tuple hN, T, P, S i, where

• N is a finite set of nonterminal symbols

• T is a finite set of terminal symbols

• P is a set of rules of the form (A! R), where A 2 N
and R is a graph fragment hVR, ER, `R, XRi
• S 2 N is a distinguished start symbol

If H = hV, E, `i is a graph and G = hN, T, P, S i is a HRG,
then for any production (A ! R) 2 P and an edge e =
(v1 · · · vk) 2 E such that `(e) = A, we write H )G H0 i↵

H0 = H[e/R]. We write )⇤G for the reflexive, transitive
closure of)G. Define L(G) = {H | S )⇤G H}.

We say that a HRG is growing if each of its productions
has at least one non-external node or at least one edge.

In the examples below, we use only unary and binary
edges. We notate a unary edge connecting to node v with
label c by simply writing the label c beneath v

✓
c

◆
. A

binary edge e = (v1v2) is drawn with v1 on top and v2 on
the bottom. In graph fragments, external nodes are drawn
as black circles ( ). If a graph fragment has two external
nodes X = (v1v2), v1 is drawn on top, and v2 is drawn on
the bottom.

Example. Below is a HRG with start symbol T :

T !

E

T
want0

in
sta

nc
e dom

ain
agent

T !

see0

in
sta

nc
e agent E !

me0
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Synchronous HERGs• Binary

h
A! R, ⌘1, |E⌘1 |, I, �1

i h
A! R, ⌘2, |E⌘2 |, J, �2

i

[A! R, ⌘, 0, I [ J, �1 [ �2]

where ⌘1 and ⌘2 are the two children of ⌘.

Let k be the treewidth of G. For each item [A !
R, ⌘, i, I, �], every boundary node v of I must belong to ⌘.
Therefore the number of boundary nodes is bounded by
|⌘|  k + 1. It follows that the number of possible items is
in O((2dn)k+1), which is the space complexity of the algo-
rithm. The number of instantiations of the Complete rule
is also in O((2dn)k+1), which is the time complexity of the
algorithm.

4 Extensions

A number of extensions of HRG and the HRG recog-
nition algorithm immediately follow from the fact that
derivations of HRGs are trees and form context-free sets.

4.1 Derivation forests

4.2 Weighted HRGs

We can associate a weight with each production of a
HRG, so that the weight of a HRG derivation is the prod-
uct of the weights of the productions used. If we require
that the weights of all productions with the same left-
hand-side sum to one, then the derivation weights form
a probability distribution (Mosbah, 1996).

Viterbi algorithm

Inside/Outside algorithm

4.3 Synchronous HRGs

We can also build synchronous grammars that synchro-
nize HRGs with other HRGs, or HRGs with other for-
malisms. Of particular interest for linguistics is to syn-
chronize a HRG, modeling semantics, with a TSG or
TAG, modeling syntax.

A synchronous HRG/TSG has productions of the form
hA! R, B! Q,⇠i, where (A ! R) is a HRG produc-
tion, B ! Q is a TSG production, and ⇠ is a one-to-one
correspondence between the nonterminal occurrences in
R and those of Q. If X ⇠ Y , we draw matching boxed
indices ( 1 , 2 , . . .) next to X and Y .

Example. Below is a synchronous HRG/TSG:

T !

E 1

T 2
want0

in
sta

nc
e dom

ain
agent

S!

S

VP

S 2VBP

want

NP 1

T !

see0

in
sta

nc
e agent S!

S

VP

VP

VB

see

TO

to

NP

✏

E !

me0

instance NP!

NP

PRP

I

Translation algorithm
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Summary

Synchronous grammars are useful for 
various tasks: translation, understanding/
generation

In some ways, they are straightforward 
(even trivial) extensions of standard 
formalisms

But they can add significant complexity
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