Making a Binary Heap from a List

CSE 30331/34331

Fall 2015 (version 1)

To initially build a binary heap from a list of \(n \) elements, we could start with an empty heap and then push each element. Equivalently, copy all the elements into the heap, in any order. Then, working top-down, reheapify-up each node. Since the reheapify-up operation takes \(O(\log n) \) time and there are \(n \) elements, this takes \(O(n \log n) \) time.

But there is a faster way, which is used by \texttt{std::priority_queue} and \texttt{std::make_heap}. Copy all the elements into the heap, in any order. Then, working bottom-up, reheapify-down each node. How is this any faster? It would seem that the reheapify-down operation takes \(O(\log n) \) time and there are \(n \) elements, so this takes \(O(n \log n) \) time.

A more careful analysis shows that it actually takes \(O(n) \) time. Intuitively, it’s because if we reheapify-up, the biggest levels have the longest distance to travel, whereas if we reheapify-down, the biggest levels have the shortest distance to travel.

Let \(h = \lfloor \log n \rfloor \), the height of the tree (\(h = 0 \) means just a root node).

\[
\begin{align*}
1 \text{ element at height } h &= 2 \\
2 \text{ elements at height } h - 1 \\
\leq 4 \text{ elements at height } 0
\end{align*}
\]

There is 1 element at height \(h \) (the root), 2 elements at height \(h - 1 \), and so on down to height 0 (the bottom level). In general there are \(2^{h-k} \) elements at height \(k \) (where \(0 \leq k \leq h \)). And an element at height \(k \) takes at most \(k \)

\[1\text{Under certain assumptions, this can be shown to be average-case linear-time, but the algorithm presented next is worst-case linear-time.}\]
operations to bubble down. So the total number of operations is at most

\[
T(n) \leq \sum_{k=0}^{h} 2^{h-k} k
\]

\[
= 2^h \sum_{k=0}^{h} \frac{k}{2^k}
\]

\[
\leq n \sum_{k=0}^{h} \frac{k}{2^k}.
\]

To evaluate the summation, we need a trick (which you are not responsible for on the exam!). Let \(x = \frac{1}{2} \). Then we have

\[
\sum_{k=0}^{h} \frac{k}{2^k} = \sum_{k=0}^{h} kx^k
\]

\[
\leq \sum_{k=0}^{\infty} kx^k
\]

\[
= x \sum_{k=0}^{\infty} kx^{k-1}
\]

\[
= x \frac{d}{dx} \sum_{k=0}^{\infty} x^k \quad \text{(the trick)}
\]

\[
= x \frac{d}{dx} \frac{1}{1-x}
\]

\[
= x \frac{1}{(1-x)^2}
\]

\[
= 2.
\]

So the total number of operations is at most 2n. So building a heap takes time \(\mathcal{O}(n) \).