
Chapter 14

(Partially) Unsupervised Parsing

The linguistically-motivated tree transformations we discussed previously are very effective, but when
we move to a new language, we may have to come up with new ones. It would be nice if we could auto-
matically discover these transformations. Suppose that we have a grammar defined over nonterminals
of the form X [q], where X is a nonterminal from the training data (e.g., NP) and q is a number between
1 and k (for simplicity, let’s say k = 2). We only observe trees over nonterminals X , but need to learn
weights for our grammar. We can do this using EM Matsuzaki, Miyao, and Tsujii, 2005; Petrov et al., 2006.

CSE 40/60657: Natural Language Processing April 22, 2015



Chapter 14. (Partially) Unsupervised Parsing 101

14.1 Hard EM on trees
Suppose our first training example is the following tree:

S

VP

NP

NN

dog

DT

the

VBD

saw

NP

NN

cat

DT

the

And suppose that our initial grammar is:

DT[1]
1−→ the

DT[2]
1−→ the

NN[1]
0.2−−→ cat

NN[1]
0.8−−→ dog

NN[2]
0.7−−→ cat

NN[2]
0.3−−→ dog

VBD[1]
1−→ saw

VBD[2]
1−→ saw

S[1]
0.2−−→ NP[1] VP[1]

S[1]
0.4−−→ NP[1] VP[2]

S[1]
0.1−−→ NP[2] VP[1]

S[1]
0.3−−→ NP[2] VP[2]

S[2]
0.5−−→ NP[1] VP[1]

S[2]
0.1−−→ NP[1] VP[2]

S[2]
0.2−−→ NP[2] VP[1]

S[2]
0.2−−→ NP[2] VP[2]

NP[1]
0.2−−→ DT[1] NN[1]

NP[1]
0.4−−→ DT[1] NN[2]

NP[1]
0.1−−→ DT[2] NN[1]

NP[1]
0.3−−→ DT[2] NN[2]

NP[2]
0.5−−→ DT[1] NN[1]

NP[2]
0.1−−→ DT[1] NN[2]

NP[2]
0.2−−→ DT[2] NN[1]

NP[2]
0.2−−→ DT[2] NN[2]

VP[1]
0.2−−→ VBD[1] NP[1]

VP[1]
0.4−−→ VBD[1] NP[2]

VP[1]
0.1−−→ VBD[2] NP[1]

VP[1]
0.3−−→ VBD[2] NP[2]

VP[2]
0.5−−→ VBD[1] NP[1]

VP[2]
0.1−−→ VBD[1] NP[2]

VP[2]
0.2−−→ VBD[2] NP[1]

VP[2]
0.2−−→ VBD[2] NP[2]

If we want to do hard EM, we need to do:

• E step: find the highest-weight derivation of the grammar that matches the observed tree (modulo
the annotations [q]).

• M step: re-estimate the weights of the grammar by counting the rules used in the derivations found
in the E step, and normalize.

The M step is easy. The E step is essentially Viterbi CKY, only easier because we’re given a tree instead of
just a string. The chart for this algorithm looks like the following, where each cell works exactly like the
cells in CKY. Can you fill in the rest?

CSE 40/60657: Natural Language Processing April 22, 2015



Chapter 14. (Partially) Unsupervised Parsing 102

dogthe

saw

NP[1] 0.28
NP[2] 0.14

NN[1] 0.2
NN[2] 0.7

cat

DT[1] 1
DT[2] 1

the

14.2 Hard EM on strings

Another scenario is that we’re given only strings instead of trees, and we have some grammar that we
want to learn weights for. For example, if we train a grammar on the Wall Street Journal portion of the
Penn Treebank, but we want to learn a parser for Twitter. This kind of domain adaptation problem is

CSE 40/60657: Natural Language Processing April 22, 2015



Chapter 14. (Partially) Unsupervised Parsing 103

often solved using something similar to hard EM.

• Extract the grammar rules and initialize the weights by training on the labeled training data (in our
example, the WSJ portion of the Treebank).

• E step: find the highest-weight tree of the grammar for each string in the unlabeled training data
(in our example, the Twitter data).

• M step: re-estimate the weights of the grammar.

The E/M steps can be repeated, though in practice one might find that one iteration works the best.
The following sections, all optional, present the machinery that we need in order to do real EM on

either strings or trees. First, we present a more abstract view of parsing as intersection between a CFG
and a finite-state automaton (analogous to how we viewed decoding with FSTs as intersection). Then, we
show how to compute expected counts of rules using the Inside/Outside algorithm, which is analogous
to computing expected counts of transitions using the Forward/Backward algorithm.

14.3 Parsing as intersection (optional)

Previously we showed how to find the best tree for w . But suppose we don’t just want the best tree, but
all possible trees. This is, again, an easy modification. Instead of keeping the best back-pointer in each
back[i , j ][X ], we keep a set of all the back-pointers.

Require: string w = w1 · · ·wn and grammar G = (N ,Σ,R,S)
Ensure: G ′ generates all parses of w

1: initialize chart[i , j ][X ] ←# for all 0 ≤ i < j ≤ n, X ∈ N

2: for all i ← 1, . . . ,n and (X
p−→ wi ) ∈ R do

3: chart[i [1], i ][X ] ← chart[i −1, i ][X ]∪ {Xi−1,i
p−→ wi }

4: end for
5: for ℓ← 2, . . . ,n do
6: for i ← 0, . . . ,n −ℓ do
7: j ← i +ℓ
8: for k ← i +1, . . . , j −1 do

9: for all (X
p−→ Y Z ) ∈ R do

10: if chart[i ,k][Y ] ̸=# and chart[k, j ][Z ] ̸=# then

11: chart[i , j ][X ] ← chart[i , j ][X ]∪ {Xi , j
p−→ Yi ,k Zk, j }

12: end if
13: end for
14: end for
15: end for
16: end for
17: G ′ ←

⋃

0≤i< j≤n

⋃

X∈N
chart[i , j ][X ]

The grammar G ′ generates all and only the parse trees of w . It is usually called a packed forest. It is a
forest because it represents a set of trees, and it is packed because it is only polynomial sized yet repre-
sents a possibly exponential set of trees. (It is more commonly represented as a data structure called a

CSE 40/60657: Natural Language Processing April 22, 2015



Chapter 14. (Partially) Unsupervised Parsing 104

hypergraph rather than as a CFG. But since the two representations are equivalent, we will stick with a
CFG.)

The packed forest can be thought of as a CFG that generates the language L(G)∩ {w}. More generally,
a CFG can be intersected with any finite-state automaton to produce another CFG. Why would we want
to do this? For example, consider the following fragment G of our grammar (??) from above (NP is the
start symbol).

NP → DT NN (14.1)

DT → a (14.2)

DT → an (14.3)

NN → arrow (14.4)

NN → banana (14.5)

This generates the ungrammatical strings

(14.6) a arrow

(14.7) an banana

How do we tell a computer when to say a and when to say an? The most natural way is to use an FSA like
the following FSA M :

(14.8) q0

qa

qan

a

an

arrow
banana

banana

arrow

So we need to combine G and M into a single thing (another CFG) that generates the intersection of L(G)
and L(M).

To do this, we can use a construction due to Bar-Hillel (Bar-Hillel, Perles, and Shamir, 1961), we which
illustrate by example. Assume that M has no ϵ-transitions. The basic idea is to modify the CFG so that it
simulates the action of M . Every nonterminal symbol A gets annotated with two states, becoming Aq,r .
State q says where the FSA could be before reading the yield of the symbol, and r says where the FSA
would end up after reading the yield of the symbol.

We consider each rule of the grammar one by one. First, consider the production DT → a. Suppose
that M is in state q0. After reading the yield of this rule, it will end up in state qa. So we make a new rule,

DTq0,qa → a

CSE 40/60657: Natural Language Processing April 22, 2015



Chapter 14. (Partially) Unsupervised Parsing 105

But what if M starts in state qa or state qan? In that case, M would reject the string, so we don’t make any
new rules for these cases. By similar reasoning, we make rules

DTq0,qan → an

NNq0,q0 → arrow

NNqan,q0 → arrow

NNq0,q0 → banana

NNqa,q0 → banana

Now consider the production NP → DT NN. Imagine that M is in state q0 and reads the yield of DT.
What state will it be in after? Since we don’t know, we consider all possibilities. Suppose that it moves to
state qa, and suppose that after reading the yield of NN, it ends up in state qan. To capture this case, we
make a new rule,

NPq0,qan → DTq0,qa NNqa,qan

We do this for every possible sequence of states. (We didn’t promise that this construction would be the
most efficient one!)

NPq0,q0 → DTq0,q0 NNq0,q0

NPq0,qa → DTq0,q0 NNq0,qa

NPq0,qan → DTq0,q0 NNq0,qan

NPq0,q0 → DTq0,qa NNqa,q0

...

Finally, we create a new start symbol, S′, and a rule

S′ → NPq0,q0

because q0 is both the initial state and a final state. If M had more than one final state, we would make a
new rule for each.

Question 24. How big is the resulting grammar, as a function of the number of rules in G and states in
M?

But not all the rules generated are actually used. For example, it’s impossible to get from q0 to q0 while
reading a DT, so any rule that involves DTq0,q0 can be deleted. We can build a more compact grammar as
follows. Consider again the production NP → DT NN. Imagine that M is in state q0 and reads the yield
of DT. What state will it be in after? Instead of considering all possibilities, we only look at the annotated
nonterminals that have been created already. We have created DTq0,qa , so M could be in state qa. Then,
after reading NN, it could be in state q0 (because we have created NNqa,q0 ). So we make a new rule,

NPq0,q0 → DTq0,qa NNqa,0

and, by similar reasoning, we make

NPq0,q0 → DTq0,qan NNqan,0

CSE 40/60657: Natural Language Processing April 22, 2015



Chapter 14. (Partially) Unsupervised Parsing 106

S

Xi , j

outside[Xi , j ]

inside[Xi , j ]

Figure 14.1: The inside probability of Xi , j is the total weight of all subtrees rooted in Xi , j (gray), and the
outside probability is the total weight of all tree fragments with a “broken-off” node Xi , j (white).

but no others. We do this for all the rules in the grammar. But after we are done, we must go back and
process all the rules again, because the set of annotated nonterminals may have changed. Only when the
set of annotated nonterminals converges can we stop. In this case, we are done.

The resulting grammar is:

NPq0,q0 → DTq0,qa NNqa,q0

NPq0,q0 → DTq0,qan NNqan,q0

DTq0,qa → a

DTq0,qan → an

NNq0,q0 → arrow

NNqan,q0 → arrow

NNq0,q0 → banana

NNqa,q0 → banana

Question 25. Extend the FSA M to include all the vocabulary from grammar (??) and find their intersec-
tion.

14.4 Inside/outside probabilities (optional)

Recall that when training a weighted FSA using EM, the key algorithmic step was calculating forward and
backward probabilities. The forward probability of a state q is the total weight of all paths from the start
state to q , and the backward probability is the total weight of all paths from q to any final state. We can
define a similar concept for a node (nonterminal symbol) in a forest.

The inside probability of a node Xi , j is the total weight of all derivations Xi , j ⇒∗ w , where w is any
string of terminal symbols. That is, it is the total weight of all subtrees derivable by Xi , j .

CSE 40/60657: Natural Language Processing April 22, 2015



Chapter 14. (Partially) Unsupervised Parsing 107

P (X → Y Z )

S

Xi , j

Yi ,k Zk, j

outside[Xi , j ]

inside[Zk, j ]inside[Yi ,k ]

Figure 14.2: To compute the outside probability of Yi ,k , we use the outside probability of Xi , j and the
inside probability of Zk, j .

The outside probability is the total weight of all derivations S ⇒∗ v Xi , j w , where v and w are strings of
terminal symbols. That is, it is the total weight of all tree fragments with root S and a single “broken-off”
node Xi , j (see Figure ??).

We already left it to you (Question ??) to figure out how to calculate the total weight of all derivations.
The intermediate values of this calculation are the inside probabilities. How about the outside probabil-
ities? This computation proceeds top-down. To compute the outside probability of Yi ,k , we look at its
possible parents Xi , j and siblings Zk, j . For each, we can compute the total weight of the outside part of
all derivations going through these three nodes: it is outside[Xi , j ] ·P (X → Y Z ) · inside[Zk, j ]. If we sum
over all possible parents and siblings (both left and right), we get the outside probability of Yi ,k .

More precisely, the algorithm looks like this:

Require: string w = w1 · · ·wn and grammar G = (N ,Σ,R,S)
Require: inside[Xi , j ] is the inside probability of Xi , j
Ensure: outside[Xi , j ] is the outside probability of Xi , j

for all X , i , j do
initialize outside[Xi , j ] ← 0

end for
outside[S,0,n] ← 1
for ℓ← n,n −1, . . . ,2 do ◃ top-down

for i ← 0, . . . ,n −ℓ do
j ← i +ℓ
for k ← i +1, . . . , j −1 do

for all (X
p−→ Y Z ) ∈ R do

outside[Yi ,k ] ← outside[Yi ,k ]+outside[Xi , j ] ·p · inside[Zk, j ]
outside[Zk, j ] ← outside[Zk, j ]+outside[Xi , j ] ·p · inside[Yi ,k ]

end for
end for

end for

CSE 40/60657: Natural Language Processing April 22, 2015



Chapter 14. (Partially) Unsupervised Parsing 108

end for

Question 26. Fill in the rest of the details for EM training of a PCFG.

1. What is the total weight of derivations going through a forest edge Xi , j → Yi ,k Zk, j ?

2. What is the fractional count of this edge (probability of using this edge given input string w)?

3. How do you compute the fractional count of a production X → Y Z (probability of using this pro-
duction given input string w)?

4. How do you reestimate the probability of a production X → Y Z ?

CSE 40/60657: Natural Language Processing April 22, 2015



Bibliography

Bar-Hillel, Y., M. Perles, and E. Shamir (1961). “On formal properties of simple phrase structure gram-
mars”. In: Zeitschrift für Phonetik, Sprachwissenschaft und Kommunikationsforschung 14.2, pp. 143–
172.

Matsuzaki, Takuya, Yusuke Miyao, and Jun’ichi Tsujii (2005). “Probabilistic CFG with Latent Annota-
tions”. In: Proc. ACL, pp. 75–82.

Petrov, Slav et al. (2006). “Learning Accurate, Compact, and Interpretable Tree Annotation”. In: Proc.
COLING-ACL, pp. 433–440.

CSE 40/60657: Natural Language Processing April 22, 2015


