
Chapter 5

Language Modeling

5.1 Introduction

A language model is simply a model of what strings (of words) are more or less likely to be generated by
a speaker of English (or some other language). More specifically, it’s a model that predicts what the next
word will be, given all the words so far.

5.1.1 Applications

Predicting the next word has some direct applications – for example, your phone tries to predict what
you will type, in order to make your typing easier.

Most importantly, however, language models are used in many applications whose output is English
text: for example, in automatic speech recognition or machine translation, we need a language model in
order to make the system prefer to output sentences that are well-formed English. We’ll see how this is
done in the next chapter.

Finally, we can use a language model as a fancier replacement for the bag-of-words model in text
classification: if we build a different language model for each class, then we can classify documents using

P (k | d) ∝ P (k)P (d | k)

where P (d | k) is the class-specific language model.

5.1.2 Evaluation

Language models are best evaluated extrinsically, that is, how much they help the application (e.g.,
speech recognition or machine translation) in which they are embedded. But for intrinsic evaluation,
the standard evaluation metric is (per-word) perplexity:

perplexity = 2cross-entropy (5.1)

cross-entropy =− 1

N
log2 likelihood (5.2)

likelihood = P (w1 · · ·wN ) (5.3)
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A lower perplexity is better.
Perplexity should be computed on held-out data, that is, data that is different from the training data.

But held-out data is always going to have unknown words (words not seen in the training data), which
require some special care. For if a language model assigns zero probability to unknown words, then it will
have a perplexity of infinity. But if it assigns a nonzero probability to unknown words, how can it sum to
one if it doesn’t know how many unknown word types there are?

If we compare two language models, we should ensure that they have exactly the same vocabulary.
Then, when calculating perplexity, we can either skip unknown words, or we can merge them all into a
single unknown word type, usually written <unk>. But if two language models have different vocabular-
ies, there isn’t an easy way to make a fair comparison between them.

5.2 n-gram Language Models

The simplest kind of language model is the n-gram language model. A unigram (1-gram) language model
is a bag-of-words model:

P (w1 · · ·wN ) =
N∏

i=2
p(wi ). (5.4)

A bigram (2-gram) language model is:

P (w1 · · ·wN ) = p(w1 | <s>)×
N∏

i=2
p(wi | wi−1)×p(</s> | wN ). (5.5)

A general m-gram language model (we’re going to use m instead of n, because n will be used for some-
thing else) is:

P (w1 · · ·wN ) =
N+1∏
i=1

p(wi | wi−m+1 · · ·wi−1), (5.6)

where we pretend that wi = <s> for i ≤ 0, and wN+1 = </s>.
Training is easy. Let’s use the following notation (Chen and Goodman, 1998):

N number of word tokens (not including <s>)
c(w) count of word w

c(uw) count of bigram uw
c(u•) count of bigrams starting with u

n number of word types ( = |Σ|), including <unk>
nr number of word types seen exactly r times

nr (u•) number of word types seen exactly r times after u
nr+ number of word types seen at least r times

nr+(u•) number of word types seen at least r times after u

For a bigram language model, we estimate

p(w | u) = c(uw)

c(u•)
,

and similarly for m-grams in general.
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5.3 Smoothing unigrams

How can a model assign nonzero probability to unknown words? As with bag of words models, we need
to apply smoothing. Smoothing is a large and complicated subject; we’ll try to cover the main ideas here,
but for a full treatment, the authoritative reference is the technical report by Chen and Goodman (1998).

Let’s first think about how to smooth unigram models. Smoothing always involves taking counts away
from some events and giving those counts back to some (other) events. We’ll look at three schemes below.
We assume that there’s just one unknown word type, <unk>.

5.3.1 Limiting the vocabulary

Possibly the simplest scheme is simply to pretend that some word (types) seen in the training data are
unknown. For example, we might limit the vocabulary to 10,000 word types, and all other word types are
changed to <unk>. Or, we might limit the vocabulary just to those seen five or more times, and all other
word types are changed to <unk>.

This method is used only in situations where it’s inconvenient to use a better smoothing method. It’s
common, for instance, in neural language models.

5.3.2 Additive smoothing

As before, we can do add-one or add-δ smoothing:

p(w) = c(w)+δ

N +nδ
. (5.7)

Another way to write this is as a mixture of the maximum-likelihood estimate and the uniform distribu-
tion:

p(w) =λ
c(w)

N
+ (1−λ)

1

n
, (5.8)

where

λ= N

N +nδ
. (5.9)

This way of writing it also makes it clear that although we’re adding to the count of every word type,
we’re not adding to the probability of every word type (because the probabilities still have to sum to one).
Rather, we “tax” each word type’s probability at a flat rate λ, and redistribute it equally to all word types.

How are δ or λ determined? They can be optimized on held-out data (why does it have to be held-
out?), but there are theoretical justifications for various magic values:

• δ= 1 is called add-one or Laplace smoothing

• δ= 1
2 is called expected likelihood estimation or Jeffreys-Perks smoothing

• δ= n1+
n or, equivalently, λ= N

N+n1+ , is called Witten-Bell smoothing (Witten and Bell, 1991)

Ultimately, you just have to try different values and see what works best.

CSE 40/60657: Natural Language Processing Fall 2016 (version of September 29, 2016)



Chapter 5. Language Modeling 35

5.3.3 Absolute discounting

As a taxation system, additive smoothing might have some merit, but as a smoothing method, it doesn’t
make a lot of sense. For example, we looked at a sample of 56M words of English data, in which the word
‘the’ appears 3,579,493 times. Add-one-smoothing gives p(the) = 0.0641, which means that in some other
equal-sized sample, the model would expect ‘the’ to occur 3,570,938 times. In other words, 8,555 of the
occurrences of ‘the’ in our training data were somehow a fluke.

Intuitively, smoothing shouldn’t decrease the expected count of a word (relative to its empirical count)
by more than about one. This is the idea behind absolute discounting. It takes an equal amount d
(0 < d < 1) from every seen word type and redistributes it equally to all word types:1

p(w) = max(0,c(w)−d)

N
+ n1+d

N

1

n
. (5.10)

How is d determined? Most commonly, the following formula (Ney, Essen, and Kneser, 1994) is used,

d = n1

n1 +2n2
. (5.11)

The interesting historical background to this method is that it is based on Good-Turing smoothing, which
was invented by Alan Turing while trying to break the German Enigma cipher during World War II.

5.4 Experiment

We took the same 56M word sample as before and used 10% of it as training data, 10% as heldout data,
and the other 80% just to set the vocabulary (something we do not ordinarily have the luxury of).

We plotted the count of word types in the held-out data versus their count in the training data (multi-
plying the held-out counts by a constant factor so that they are on the same scale as the training counts)
in Figure 5.1. You can see that for large counts, the counts more or less agree, and maximum-likelihood
is doing a fine job.

What about for low counts? We did the same thing but zooming into counts of ten or less, shown
in Figure 5.2, upper-left corner. You can see that the held-out counts tend to be a bit lower than the
maximum-likelihood estimate, with the exception of the zero-count words, which obviously couldn’t be
lower than the MLE, which is zero.

We also compared against Witten-Bell and absolute discounting. Although both methods do a good
job of estimating the zero-count words, Witten-Bell stands out in overestimating all the other words.
Absolute discounting does much better.

We get a similar picture when we look at bigrams (Figure 5.3), again smoothing with uniform prob-
abilities. The held-out counts are again lower than the MLEs, by a bit more this time, except for the
noticeable bump for zero-count words. (If we had used even more data to compute the vocabulary, this
bump would be reduced.) Absolute discounting is nearly indistinguishable from the held-out counts.
But Witten-Bell looks very different: here, you can see the effect of multiplying by λ.

1In the original definition, the subtracted counts were all given to <unk>. But Chen and Goodman introduced the variant shown
here, called interpolated Kneser-Ney, and showed that it works better.
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Figure 5.1: Counts in held-out data versus in training data. The held-out counts have been multiplied by
a constant factor so as to be on the same scale as the training counts. The red line is what maximum-
likelihood estimation would predict.
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Figure 5.2: Comparison of different estimation methods, for a unigram language model. In all graphs,
the x-axis is the count in the training data; the y-axis is the expected count in new data, adjusted for the
size of the training data. The red line is what maximum-likelihood estimation would predict. The graph
labeled “held-out” comes from actual counts on held-out data; all the other methods are trying to match
this one.
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Figure 5.3: Comparison of different estimation methods, for a bigram language model. In all graphs, the
x-axis is the count in the training data; the y-axis is the expected count in new data, adjusted for the
size of the training data. The red line is what maximum-likelihood estimation would predict. The graph
labeled “held-out” comes from actual counts on held-out data; all the other methods are trying to match
this one.

5.5 Smoothing bigrams and beyond

To smooth bigrams, we smooth each conditional distribution p(w | u) using the same principles that
we saw with unigrams. The “taking away” part remains exactly the same. But the “giving back” part is
different. Previously, we gave back to each word type equally. But now, a better option is to give weight
back to word types in proportion to their unigram probability p(w). For example, suppose we’ve seen
“therizinosaur” in the training data, but never “therizinosaur egg.” It’s not reasonable to say p(egg |
therizinosaur) = 0; instead, it’s better to let our estimate of p(egg | therizinosaur) be partly based on
p(egg).

So, additive smoothing for bigrams looks like:

p(w | u) =λ(u)
c(uw)

c(u•)
+ (1−λ(u))p(w), (5.12)

where λ now depends on u. In particular, for Witten-Bell smoothing, λ(u) = c(u•)
c(u•)+n1+(u•) . Absolute dis-

counting for bigrams looks like:

p(w | u) = max(0,c(uw)−d)

c(u•)
+ n1+(u•)d

c(u•)
p(w) (5.13)

where p(w) is the (smoothed) unigram model. These are the same as (5.8) and (5.10), but with p(w)
replacing 1/n.

Recursive smoothing To smooth a general m-gram model, we smooth it with the (m −1)-gram model,
which is in turn smoothed with the (m −2)-gram model, and so on down to the 1-gram model, which is
smoothed with the uniform distribution. If u is an (m−1)-gram, define ū to be the (m−2)-gram suffix of
u (for example, if u = the cat sat, then ū = cat sat). Then additive smoothing looks like:

p(w | u) =λ(u)
c(uw)

c(u•)
+ (1−λ(u))p(w | ū), (5.14)
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Figure 5.4: Therizinosaur.

where, again, Witten-Bell says that λ(u) = c(u•)
c(u•)+n1+(u•) . Absolute discounting looks like

p(w | u) = max(0,c(uw)−d)

c(u•)
+ n1+(u•)d

c(u•)
p(w | ū). (5.15)

Kneser-Ney smoothing In absolute discounting for bigrams (5.13), we said that p(w) was the smoothed
unigram model. But there’s a way to estimate p(w) that makes this work better. The enhancement comes
from Kneser-Ney smoothing (Ney, Essen, and Kneser, 1995), a form of absolute discounting. Consider the
bigram “Notre Dame.” In some data (say, web pages of people at Notre Dame), this bigram will be quite
frequent. So that means that the unigram probabilities p(Notre) and p(Dame) are reasonably high too.
But now think about P (Dame | therizinosaur) – should we estimate that using p(Dame)? No, that would
be too high, because we know that “Dame” occurs practically only after “Notre.”

The basic idea behind the fix is that we should train the unigram model only on the words that we
took away from the bigram model. Every time we see a new bigram uw , feed it with a count of (1−d)
to the bigram model, and feed w with a count of 1 to the unigram model.2 Every subsequent time we
see uw , we feed it entirely to the bigram model and not at all to the unigram model. Thus, the unigram
model only sees word w when it occurs in a new bigram type. This means that the unsmoothed unigram
estimates are:

p(w) = n1+(•w)

n1+(••)
. (5.16)

Since “Dame” occurs only after “Notre,” we have n1+(•Dame) = 1, so the unigram probability p(Dame)
will also be low.

But wait! The unigram model should itself be smoothed, again by Kneser-Ney smoothing. This is
something that is easier to code than to write in equations, but:

p(w) = max(0,n1+(•w)−d (1))

n1+(••)
+ n1+(•)d (1)

n1+(••)

1

n
, (5.17)

where we’ve written d (1) with a superscript to distinguish it from the d used in the bigram model.

2A count of d might have made more sense, but the fractional count would be problematic. This is because the unigram model
also needs to be smoothed, and equation (5.11) needs integral counts.
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5.6 Finite Automata

N -gram language models are just one example of a more general class of models that go beyond bag-
of-word models by capturing dependencies between a word and its previous words. These models are
based on weighted finite-state automata.

5.6.1 Definition

A finite automaton (FA) is typically represented by a directed graph. We draw nodes to represent the
various states that the machine can be in. The node can be drawn with or without the state’s name inside.
The machine starts in the initial state, which we draw as:

The edges of the graph represent transitions, for example:

q r
a

which means that if the machine is in state q and the next input symbol is a, then it can read in a and
move to state r . The machine also has zero or more final states, which we draw as:

If the machine reaches the end of the string and is in a final state, then it accepts the string.
We say that a FA is deterministic if every state has the property that, for each label, there is exactly one

exiting transition with that label. We will define nondeterministic FAs later.
Here’s a more formal definition.

Definition 1. A finite automaton is a tuple M = 〈Q,Σ,δ, s,F 〉, where:

• Q is a finite set of states

• Σ is a finite alphabet

• δ is a set of transitions of the form q
a−→ r , where q,r ∈Q and a ∈Σ

• s ∈Q is the initial state

• F ⊆Q is the set of final states

A string w = w1 · · ·wn ∈ Σ∗ is accepted by M iff there is a sequence of states q0, . . . , qn ∈ Q such that

q0 = s, qn ∈ F , and for all i , 1 ≤ i ≤ n, there is a transition qi−1
wi−−→ qi . We write L(M) for the set of strings

accepted by M .

We will frequently make use of the following very simple construction. Given a string w , let the sin-
gleton DFA for w be the minimal DFA accepting {w}. For example, the singleton DFA for “the cat sat”
is:

the cat sat
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5.6.2 Intersection

You learned about intersection of finite automata in Theory, but here’s a quick review. Given two finite
automata M1 = (Σ,Q1, s1,F1,δ1) and M2 = (Σ,Q2, s2,F2,δ2), we can recognize the language L(M1)∩L(M2),
intuitively, by feeding the input string simultaneously to both M1 and M2. When we reach the end of the
input, if both machines are in an accept state, then we accept the string. Otherwise, reject.

We can build a finite automaton M that does exactly this. Namely, M = (Σ,Q1 ×Q2, s1s2,F1 ×F2,δ),
where δ(q1q2,σ) = (δ1(q1,σ),δ2(q2,σ)). (We use q1q2 as a shorthand for (q1, q2).)

Note that if M1 and M2 are deterministic, so is M .

5.6.3 Weighted finite automata

A weighted finite automaton adds a weight to each transition (that is, δ is a mapping Q ×Σ×Q →R) and
a stop weight to each state. The weight of an accepting path through a weighted FA is the product of the
weights of the transitions along the path, times the stop weight of the final state. A weighted FA defines a
weighted language, or a distribution over strings, in which the weight of a string is the sum of the weights
of all accepting paths of the string.

In a probabilistic FA, each state has the property that the weights of all of the exiting transitions and
the stop weight sum to one. Then the weighted FA also defines a probability distribution over strings.

Question 7. Prove the above statement.

In a transition diagram, there isn’t really a nice way to write the stop weight. Some people write it
inside the state, but we indicate stop weights by creating a pseudo-final state and a transition on the
pseudo-symbol </s>:

the / 0.5 cat / 0.2 sat / 0.4 </s> / 0.1

So, an n-gram language model is a probabilistic FA with a very simple structure. If we continue to
assume a bigram language model, we need a state for every observed context, that is, one for <s>, which
we call q<s> and one for each word type a, which we call qa . Every state is a final state. For all a,b, there
is a transition

qa
b/p(b|a)−−−−−−→ qb ,

and for every state qa , the stop weight is p(</s> | a).
The transition diagram (assuming an alphabet Σ= {a,b}) looks like this:

a / p(a | <s>
)

b / p(b | <s>)

a / p(a | a)

b
/

p
(b|a

)a
/

p
(a

|b
)

b / p(b | b)

</s> / p(</s> | <s>)

</s> / p(</s> | a)

</s
> / p(</s

> | b)
(5.18)
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5.6.4 Training

If we are given a collection of strings w1, . . . , w N and a DFA M , we can learn weights very easily. For each
string w i , run M on w i and collect, for each state q , counts c(q), c(q, a) for each word a, and c(q,</s>),

which is the number of times that M stops in state q . Then the weight of transition q
a−→ r is c(q,a)

c(q) , and

the stop weight of q is c(q,</s>)
c(q) . This is the weighted DFA that maximizes the likelihood of the training

data w1, . . . w N .
If the automaton is not deterministic, the above won’t work because for a given string, there might

be more than one path that accepts it, and we don’t know which path’s transitions to count. Training
nondeterministic automata is the subject of a later chapter.
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