
Chapter 9

Speech

Speech recognition has been an intense area of research for decades, and is now a commonplace feature
in PCs and mobile devices. Recently, the field has undergone rapid change with the introduction of
neural networks, but before that, the standard approach to speech recognition could be formulated in
terms of finite transducers. We give only a brief overview here. For a more detailed treatment, see the
survey by Mohri, Pereira, and Riley (2002).

9.1 Preprocessing

Given a sample of speech, we can convert it into a sequence of real-valued 39-dimensional vectors, called
the mel-frequency cepstral coefficients:

1. Slice the signal into overlapping frames, typically 25 ms wide and starting every 10 ms.

2. Perform a Fourier transform on each frame, which is the amount of power at each frequency.

3. Compute how much power there is in each of several frequency bands arranged according to the
mel scale, which is supposed to match human perception of pitch.

4. Take the log of each power, which matches human perception of loudness.

5. Take a discrete cosine transform, which removes correlations between the components.

6. Also compute the change of the components over time (∆ct = ct+2 − ct−2), and the change of the
change (∆2ct =∆ct+1 −∆ct−1), for a total of 39 components.

9.2 Model

We want to find the most likely sequence of words that this speech came from. To do this, we build a
cascade of transducers that maps from text to feature vectors:

1. Generate words using a language model, typically an n-gram model.

2. Map words to their pronunciations, which are strings of phones.

CSE 40/60657: Natural Language Processing Fall 2016 (version of October 9, 2016)



Chapter 9. Speech 63

3. Divide each phone into subphones, and stretch out each subphone to last for one or more frames.

4. For each frame, map the subphone to a feature vector.

We’ve seen automata for n-gram models already. To maps from words to their pronunciations (shown
just for two words), we can use a transducer like this:

dog : d

ϵ : A

ϵ : g

cat : k

ϵ : æ

ϵ : t

ϵ : ϵ

Hand-built dictionaries are available (e.g., the CMU pronunciation dictionary), or a grapheme-to-phoneme
model could be used or even learned automatically.

The next stage divides each phone into subphones and decides the duration of each subphone. Typi-
cally, each phone is divided into three subphones; for example, phone d would be divided into d1, d2, and
d3. The duration of each subphone is one or more time slices. So the transducer looks like this (shown
just for two phones):

d : d 1

ϵ : d1

ϵ : d2

ϵ : d2

ϵ : d3

ϵ : d3

ϵ : ϵ

g : g
1

ϵ : g2

ϵ : g1

ϵ : g3

ϵ : g2

ϵ : ϵ

ϵ : g3

ϵ : ϵ

Finally, we map from the sequence of subphone symbols to the observed sequence of feature vectors.
The problem is that the vectors have real-valued components, but we only know how to define transduc-
ers with a finite output alphabet. So we have to generalize our notation. We need something like this
(shown just for one phone, d):

d1 : N (µd1
,Σd1

)

d2 : N (µd2
,Σd2

)

d3 : N (µd3
,Σd3

)

This means that the transducer can read symbol d1, and outputs a 39-dimensional vector drawn from
the multivariate normal distribution, N (µd1

,Σd1
). The µ’s and Σ’s are parameters to be learned.

CSE 40/60657: Natural Language Processing Fall 2016 (version of October 9, 2016)



Chapter 9. Speech 64

Because the sound of a subphone might not be modeled well by a multivariate normal distribution,
we can include multiple transitions for each subphone, each with a multivariate normal distribution with
different parameters.

9.3 Training

The first two transducers (language model and lexicon) can be created separately: the first is trained on
text data, and the second is generally created by hand.

The third and fourth transducers (phone to subphone and subphone to feature vectors) are trained
together. Compose them into a single transducer that maps phones to feature vectors. Then, given data
that consists of speech together with phonetic transcriptions, there are many paths through the trans-
ducer, corresponding to different ways of aligning the phones and subphones to the speech signal (and
different choices of normal distributions, if the model allows them).

As always, we train using maximum-likelihood estimation. The probability of a training example
requires us to sum over all the paths through the transducer, which we can do efficiently using the For-
ward algorithm, just as in unsupervised tagging and in word alignment. Then, we can maximize the
log-likelihood using gradient ascent.

CSE 40/60657: Natural Language Processing Fall 2016 (version of October 9, 2016)



Bibliography

Mohri, Mehryar, Fernando Pereira, and Michael Riley (2002). “Weighted finite-state transducers in speech
recognition”. In: Computer Speech and Language 16, pp. 69–88.

CSE 40/60657: Natural Language Processing Fall 2016 (version of October 9, 2016)


