
Chapter 7

Context Free Grammars

7.1 Why, what’s wrong with finite automata?

We have spent a long time talking about all the things that finite automata can do, but there are important
things that they can’t do. For example, they cannot generate the language

L = {anbn | n ≥ 0} (7.1)

Linguistically, the analogous property that finite automata are missing is the ability to do center-
embedding. English allows sentences like:

(7.2) The motorcyle rusted.

(7.3) The motorcycle that the guy rode rusted.

(7.4) The motorcycle that the guy that my sister married rode rusted.

At minimum, we need the number of noun phrases to equal the number of verbs, which we have already
seen finite automata aren’t able to do. Actually, we want to be able to create a structure like

38

Chapter 7. Context Free Grammars 39

(7.5) S

VP

VBD

rusted

NP

SBAR

S

VP

VBD

rode

NP

SBAR

S

VP

VBD

married

NP

NN

sister

PRP$

my

IN

that

NP

NN

guy

DT

the

IN

that

NP

NN

motorcycle

DT

the

which can tell us which noun corresponds to which verb. Later, we will see how this structure is also
useful for translating into another language like Japanese or Hindi.

Question 2. The above argument holds only if you believe that unbounded center embedding is possible.
In fact, center-embedding examples degrade rather quickly as more levels are added:

(7.6) The motorcycle that the guy that the sister that my mom spoiled married rode rusted.

If center embedding is bounded, then how would you write a finite automaton to model it? What would
still be unsatisfactory about such an account?

7.2 Context free grammars

Our solution is to use context free grammars (CFGs). CFGs are also widely used in compilers, where they
are known as Backus-Naur Form. We begin with two examples of CFGs. The first one generates the

CSE 40657/60657: Natural Language Processing Version of September 28, 2017

Chapter 7. Context Free Grammars 40

Figure 7.1: Formal Languages. [audience looks around] ‘What just happened?’ ‘There must be some
context we’re missing.’

non-finite-state language {anbn | n ≥ 0}:
S → aSb

S → ϵ
(7.7)

Here, S is called a nonterminal symbol and can be rewritten using one of the above rules, whereas a and b
are called terminal symbols and cannot be rewritten. This is how the grammar works: start with a single
S, then repeatedly choose the leftmost nonterminal and rewrite it using one of the rules until there are
no more nonterminals. For example:

S ⇒ aSb

⇒ aaSbb

⇒ aaaSbbb

⇒ aaabbb

(7.8)

CSE 40657/60657: Natural Language Processing Version of September 28, 2017

Chapter 7. Context Free Grammars 41

Our next example generates sentences (7.2), (7.3), and (7.4).

S → NP VP

NP → DT NN

NP → PRP$ NN

NP → NP SBAR

VP → VBD

SBAR → IN S

DT → the

PRP$ → my

NN → motorcycle | guy | sister

VBD → married | rode | rusted

IN → that

(7.9)

Here, the uppercase symbols are nonterminal symbols, and the English words are terminal symbols. Also,
we have used some shorthand: A →β1 |β2 stands for two rules, A →β1 and A →β2.

Question 3. How would you use the above grammar to derive sentence (7.3)?

Here’s a more formal definition of CFGs.

Definition 2. A context-free grammar is a tuple G = (N ,Σ,R,S), where

• N is a set of nonterminal symbols

• Σ is a set of terminal symbols

• R is a set of rules or productions of the form A →β, where A ∈ N and β ∈ (N ∪Σ)∗

• S ∈ N is a distinguished start symbol

If A ∈ N and α,β,γ ∈ (N ∪Σ)∗, we write αAγ⇒G αβγ iff (A → β) ∈ R, and we write ⇒∗
G for the reflexive,

transitive closure of ⇒G . Then the language generated by G is L(G) = {w ∈Σ∗ | S ⇒∗
G w}.

7.3 Structure and ambiguity

As has already been alluded to, CFGs are interesting not only because they can generate more string
languages than finite automata can, but because they build trees, known as syntactic analyses, phrase-
structure trees, or parse trees. Whenever we use a rule A →β to rewrite a nonterminal A, we don’t erase A
and replace it with β; instead, we make the symbols of β the children of A.

CSE 40657/60657: Natural Language Processing Version of September 28, 2017

Chapter 7. Context Free Grammars 42

Question 4. What would the tree for sentence (7.3) be?

One of the main purposes of these trees is that every subtree of the parse tree is supposed to have a
semantics or meaning, so that the tree shows how to interpret the sentence. As a result, it is possible that
a single string can have more than one structure, and therefore more than one meaning. This is called
ambiguity. To illustrate it, we need a new example.

S → NP VP

NP → DT NN

NP → NN

NP → NN NNS

VP → VBP NP

VP → VBP

VP → VP PP

PP → IN NP

DT → a | an

NN → time | fruit | arrow | banana

NNS → flies

VBP → flies | like

IN → like

(7.10)

This grammar generates (among others) the following two strings:

(7.11) Time flies like an arrow.

(7.12) Fruit flies like a banana.

Their “natural” structures are:

CSE 40657/60657: Natural Language Processing Version of September 28, 2017

Chapter 7. Context Free Grammars 43

(7.13)
S

VP

PP

NP

NN

arrow

DT

an

IN

like

VP

VBP

flies

NP

NN

time

(7.14)
S

VP

NP

NN

banana

DT

a

VBP

like

NP

NNS

flies

NN

fruit

But the grammar also allows other structures, which would lead to other meanings:

(7.15)
S

VP

NP

NN

arrow

DT

an

VBP

like

NP

NNS

flies

NN

time

(7.16)
S

VP

PP

NP

NN

banana

DT

a

IN

like

VP

VBP

flies

NP

NN

fruit

Interpretation (7.15) says that a certain kind of fly, the time fly, is fond of arrows. Interpretation (7.16)
says that fruits generally fly in the same way that bananas fly.

Question 5. The English word buffalo has two meanings: it can be a noun (the name of several species
of oxen) or a verb (to overpower, overawe, or constrain by superior force or influence; to outwit, perplex).
Also, the plural of the noun buffalo is buffalo. Therefore, the following strings are all grammatical:

(7.17) Buffalo! (Overpower!)

(7.18) Buffalo buffalo. (Oxen overpower.)

(7.19) Buffalo buffalo buffalo. (Oxen overpower oxen.)

(7.20) Buffalo buffalo buffalo buffalo. (Oxen that overpower oxen, overpower.)

CSE 40657/60657: Natural Language Processing Version of September 28, 2017

Chapter 7. Context Free Grammars 44

In fact, the entire set {buffalon | n ≥ 1} is a subset of English. Can you write a CFG that generates it
according to English grammar? Hint: here is a tree for the fourth example:

(7.21) S

VP

VBP

buffalo

NP

SBAR

S

VP

VBP

buffalo

NP

NNS

buffalo

IN

ϵ

NP

NNS

buffalo

How many structures can you find for the following sentence:

(7.22) Buffalo buffalo buffalo buffalo buffalo.

7.4 Weighted context free grammars

Weighted CFGs are a straightforward extension of CFGs. Recall that FSTs map an input string to a set
of possible output strings, whereas weighted FSTs give us a distribution over possible output strings. In
the same way, weighted CFGs help us deal with ambiguity (a single string having multiple structures) by
giving us a distribution over possible structures.

In a weighted CFG, every production has a weight attached to it, which we write as

A
p−→β

The weight of a derivation is the product of the weights of the rules used in the derivation (if a rule is
used k times, we multiply its weight in k times).

CSE 40657/60657: Natural Language Processing Version of September 28, 2017

Chapter 7. Context Free Grammars 45

Thus we can take our grammar from last time and add weights:

S
1−→ NP VP

NP
0.5−−→ DT NN

NP
0.4−−→ NN

NP
0.1−−→ NN NNS

VP
0.6−−→ VBP NP

VP
0.3−−→ VBP

VP
0.1−−→ VP PP

PP
1−→ IN NP

DT
0.5−−→ a

DT
0.5−−→ an

NN
0.25−−→ time

NN
0.25−−→ fruit

NN
0.25−−→ arrow

NN
0.25−−→ banana

NNS
1−→ flies

VBP
0.5−−→ flies

VBP
0.5−−→ like

IN
1−→ like

(7.23)

Question What would the weight of these two derivations be?

S

VP

PP

NP

NN

arrow

DT

an

IN

like

VP

VBP

flies

NP

NN

time

S

VP

NP

NN

arrow

DT

an

VBP

like

NP

NNS

flies

NN

time

A probabilistic CFG or PCFG is one in which the probabilities of all rules with a given left-hand side
sum to one (booth+thompson:1973). A PCFG is called consistent if the probabilities of all derivations
sum to one.

CSE 40657/60657: Natural Language Processing Version of September 28, 2017

Chapter 7. Context Free Grammars 46

Aren’t all PCFGs consistent? Actually, no:

S
0.9−−→ SS (7.24)

S
0.1−−→ a (7.25)

Let Pn be the total weight of trees of height ≤ n. Thus

P1 = 0.1 (7.26)

Pn+1 = 0.9P 2
n +0.1 (7.27)

The second equation is because a tree of height ≤ n+1 can either be a tree of height 1, formed using rule
(7.25), or a tree formed using rule (7.24) and two trees of height ≤ n. The limit P = limn→∞ Pn must be
a fixed point of the second equation. There are two fixed points: P = 0.9P 2 +0.1 ⇒ P = 1

9 or 1. But note
that P1 < 1

9 , and Pi < 1
9 ⇒ Pi+1 < 1

9 . Since the sequence is always less than 1
9 , it cannot converge to 1.

Therefore, P = 1
9 !

Question What happened to the other 8
9 ?

CSE 40657/60657: Natural Language Processing Version of September 28, 2017

Bibliography

Mohri, Mehryar, Fernando Pereira, and Michael Riley (2002). “Weighted finite-state transducers in speech
recognition”. In: Computer Speech and Language 16, pp. 69–88.

47

