
Chapter 11

Statistical Parsing

Given a corpus of trees, it is easy to extract a CFG and estimate its parameters. Every tree can be thought
of as a CFG derivation, and we just perform relative frequency estimation (count and divide) on them.
That is, let c(A →β) be the number of times that the rule A →β was observed, and then

c(A) =∑
β

c(A →β) (11.1)

P̂ (A →β | A) = c(A →β)

c(A)
(11.2)

11.1 Parser evaluation

Evaluation of parsers almost always uses labeled precision and recall or the labelled F1 score Black et al.,
1991. To define this metric, we make use of the notion of a multiset, which is a set where items can occur
more than once. If A and B are multisets, define A(x) to be the number of times that x occurs in A, and
define

|A| =∑
x

A(x) (11.3)

(A∩B)(x) = min{A(x),B(x)} (11.4)

We view a tree as a multiset of brackets [X , i , j] for each node of the tree, where X is the label of the
node and wi+1 · · ·w j is its span. Note that in Penn Treebank style trees, every word is an only child and
its parent is a part-of-speech tag. The part-of-speech tag nodes (also called preterminal nodes) are not
included in the multiset.

Let t (for test) be the parser output and g (for gold) be the gold-standard tree that we are evaluating
against. Then define the precision p(t , g) and recall g (t , g) to be:

p(t , g) = |t ∩ g |
|t | (11.5)

r (t , g) = |t ∩ g |
|g | (11.6)

71

Chapter 11. Statistical Parsing 72

and the F1 score to be their harmonic mean:

F1(t , g) = 1
1
2

(
1

p(t ,g) + 1
r (t ,g)

) (11.7)

= 2|t ∩ g |
|t |+ |g | (11.8)

The typical setup for English parsing is to train the parser on the Penn Treebank, Wall Street Journal
sections 02–21, to do development on section 00 or 22, and to test on section 23. If we train a PCFG
without any modifications, we will get an F1 score of only 73%. State-of-the-art scores are above 90%.

11.2 Markovization

A PCFG captures the dependency between a parent node and all of its children. On the Penn Treebank,
this leads to over 10,000 rules, each with its own probability. In practice, it turns out that this tends to be
both too little and too much.

11.2.1 Vertical markovization

Too see why it can be too little, suppose our Treebank looked like this (Johnson, 1998; Klein and Manning,
2003):

CSE 40657/60657: Natural Language Processing Version of October 1, 2018

Chapter 11. Statistical Parsing 73

90 times NP

PP

NP

NN

car

DT

the

IN

in

NP

NN

man

DT

the

10 times NP

PP

NP

NN

dog

DT

the

IN

with

PP

NP

NN

car

DT

the

IN

in

NP

NN

man

DT

the

From this we would learn and whenever the parser is asked to choose between these two trees:

(11.9) NP

PP

NP

NN

dog

DT

the

IN

with

PP

NP

NN

car

DT

the

IN

in

NP

NN

man

DT

the

CSE 40657/60657: Natural Language Processing Version of October 1, 2018

Chapter 11. Statistical Parsing 74

(11.10) NP

PP

NP

NN

dog

DT

the

IN

with

NP

PP

NP

NN

car

DT

the

IN

in

NP

NN

man

DT

the

it will prefer the second one, which was never observed in the training data!
This can be corrected by modifying the node labels to increase their sensitivity to their vertical con-

text, much in the same way that we can increase the context-sensitivity of an n-gram language model
by increasing n. We simply annotate each node with its parent’s label. For example (assuming that the
parent of the upper NP is VP):

(11.11) NP[mom = VP]

PP[mom = NP]

NP[mom = PP]

NN[mom = NP]

car

DT[mom = NP]

the

IN[mom = PP]

in

NP[mom = NP]

NN[mom = NP]

man

DT[mom = NP]

the

Now, the parser will not be tempted to build a three-level NP (because it would require an NP[mom = NP]
with an NP[mom = NP] child, which is rare). We train the PCFG on these annotated trees, and then after
we parse the test data, we have to remove the annotations before evaluation. This helps the accuracy of
the parser considerably (to about 77% F1).

11.3 Binarization and horizontal markovization

On the other hand, our PCFG also captures too much dependency. Suppose the Treebank contains the
tree fragment

CSE 40657/60657: Natural Language Processing Version of October 1, 2018

Chapter 11. Statistical Parsing 75

(11.12) NP

PP

NP

NNP

America

IN

in

NN

building

NN

steel

JJS

tallest

DT

the

but never contains

(11.13) NP

PPNNJJSDT

Then the parser will fail trying to parse:

(11.14) NP

PP

NP

NNP

America

IN

in

NN

building

JJS

tallest

DT

the

The problem is that if we allow long rules, then there are many possible long rules, which our models
says are all independent. But we believe that there is some relationship between them. The solution is to
break down the long rules into smaller rules, just as we did to reduce parsing complexity. Here, it’s easier
to binarize the trees instead of binarizing the grammar. For example, to binarize (11.12), we introduce
new NP nodes, and annotate each one with the children that have been generated so far:

CSE 40657/60657: Natural Language Processing Version of October 1, 2018

Chapter 11. Statistical Parsing 76

(11.15) NP

NP[prev = DT]

NP[prev = DT,JJS]

NP[prev = DT,JJS,NN]

NP[prev = DT,JJS,NN,NN]

PP

NP

NNP

America

IN

in

NN

building

NN

steel

JJS

tallest

DT

the

Note that there is enough information in the annotations to reverse the binarization. So much informa-
tion, in fact, that we still can’t parse (11.14). We can again apply an idea from language modeling, this
time in the horizontal direction: make the generation of each child depend only on the previous (n −1)
children Miller et al., 1996; Collins, 1999; Klein and Manning, 2003. For example, if n = 2:

(11.16) NP

NP[prev = DT]

NP[prev = JJS]

NP[prev = NN]

NP[prev = NN]

PP

NP

NNP

America

IN

in

NN

building

NN

steel

JJS

tallest

DT

the

CSE 40657/60657: Natural Language Processing Version of October 1, 2018

Chapter 11. Statistical Parsing 77

Now we can parse (11.14), and the parser accuracy should be a little bit better.

11.4 Using linguistic knowledge

Previously we saw how to increase the amount of vertical context dependency in a PCFG by changing
it, effectively, from a bigram model to a trigram model, and how to decrease the amount of horizontal
context dependency by changing it, effectively, from a ∞-gram model to a bigram model. We can try to
use linguistic knowledge to make these context dependencies more intelligent.

11.4.1 Lexicalization

In the vertical direction, a common technique is lexicalization (sometimes called head-lexicalization to
distinguish it from another concept with the same name). In English parsing, PP attachment is one of
the most difficult ambiguities to resolve, as illustrated by the well-known sentence:

(11.17) S

VP

NP

PP

NP

NN

telescope

DT

a

IN

with

NP

NN

man

DT

a

VBD

saw

NP

PRP

I

(11.18) S

VP

PP

NP

NN

telescope

DT

a

IN

with

VP

NP

NN

man

DT

a

VBD

saw

NP

PRP

I

CSE 40657/60657: Natural Language Processing Version of October 1, 2018

Chapter 11. Statistical Parsing 78

Although there is a strong general preference for low attachment (11.17), the words involved may change
this preference. For example, after would have a definite preference for attaching to VP.

(11.19) S

VP

PP

NP

NNP

midnight

IN

after

VP

NP

NN

mogwai

DT

the

VBD

fed

NP

PRP

I

Last time, we annotated each node with the label of its parent; now, we go in the opposite direction,
annotating each node with the label of one of its leaves. Which one? We choose the linguistically “most
important” one, known as its head word, using some heuristics (e.g., the head of a VP is the verb; the
head of an NP is the final noun).

For example, tree (11.19) would become:

(11.20) S[head = fed]

VP[head = fed]

PP[head = after]

NP[head = midnight]

NN[head = midnight]

midnight

IN[head = after]

after

VP[head = fed]

NP[head = mogwai]

NN[head = mogwai]

mogwai

DT[head = the]

the

VBD[head = fed]

fed

NP[head = I]

PRP[head = I]

I

What did this buy us? We are going to learn a high probability for rules like

VP[head = w] → VP[head = w] PP[head = after] (11.21)

and low probability for rules like

NP[head = w] → NP[head = w] PP[head = after] (11.22)

so that we can learn that PPs headed by after prefer to attach to VPs instead of NPs.
If we binarize, it is convenient to binarize so that the head is generated last (lowest). Thus:

CSE 40657/60657: Natural Language Processing Version of October 1, 2018

Chapter 11. Statistical Parsing 79

(11.23) NP

PP

NP

NNP

prairie

DT

the

IN

on

NN

house

JJ

little

(11.24) NP

NP[left = JJ]

PP

NP

NNP

prairie

DT

the

IN

on

NP[left = JJ,right = PP]

NN

house

JJ

little

11.4.2 Subcategorization

In the horizontal direction, a common technique is to use subcategorization. The basic idea is that some
phrases (called arguments) are required and others (called adjuncts) are optional:

(11.25) Godzilla obliterated the city

(11.26) ? Godzilla obliterated

The verb obliterated normally takes a direct object, making the second sentence odd. On the other hand,
in the sentences

(11.27) Godzilla exists

(11.28) * Godzilla exists the monster

the verb exists never takes a direct object. By contrast, adjuncts can occur much more freely:

(11.29) Godzilla exists today

(11.30) Godzilla obliterated the city today

This can affect parsing decisions. For example,

CSE 40657/60657: Natural Language Processing Version of October 1, 2018

Chapter 11. Statistical Parsing 80

(11.31) I saw her duck

(11.32) I obliterated her duck

The first sentence is ambiguous for humans because saw can take either an NP or an S as an argument.
The second sentence is unambiguous for humans, but ambiguous for computers unless they learn that
obliterated must take an NP argument, not an S argument.

Last time, we made the generation of a child node depend on one previous child. Now, we would
like to use this same mechanism to control the number of arguments, depending on the verb. We can do
this by making the generation of a child node depend on all of the previous arguments, and none of the
previous adjuncts. I’ve left off some annotations to save space:

(11.33) S

VP

NP

NN

today

NP

NN

city

DT

the

VBD

obliterated

NP

NNP

Godzilla

(11.34) S[head = obliterated]

VP[head = obliterated]

NP

NN

today

VP[head = obliterated]

NP[head = city,arg]

NN[head = city]

city

DT

the

VP[head = obliterated,right = NP]

VBD[head = obliterated]

obliterated

NP

NNP

Godzilla

We marked [NP the city] with an arg feature to indicate that it is an argument, not an adjunct. Moreover,
the right feature, and the left feature if there were one, only keeps track of the previous arguments, not
adjuncts.

11.5 Practical Details

11.5.1 Smoothing

With the complex nonterminals we have been creating, it may become hard to reliably estimate rule
probabilities from data. The solution is to apply smoothing, as in language modeling. Witten-Bell smooth-

CSE 40657/60657: Natural Language Processing Version of October 1, 2018

Chapter 11. Statistical Parsing 81

ing is a fairly common choice in parsing. For example, to estimate the probability of

VP[head = obliterated] → VP[head = obliterated,right = NP] NP[head = city,arg]

we might interpolate its relative-frequency estimate with that of

VP[head = w] → VP[head = w,right = NP] NP[head = city,arg]

where we have replaced the word obliterated with a placeholder w to make the rule probability easier to
estimate.

If we test our parser on unseen data, it is inevitable that it will encounter unseen words. If we don’t do
anything about it, the parser will simply reject any string that has an unknown word, which is obviously
bad.

The simplest thing to do is to simulate unknown words in the training data. That is, in the training
data, replace every word that occurs only once (or ≤ k times) with a special symbol <unk>. Then train the
PCFG as usual. Then, in the test data, replace all unknown words with <unk>. It’s also fine to use multiple
unknown symbols. For example, we can replace words ending in -ing with <unk-ing>.

A more sophisticated approach would be to apply some of the ideas that we saw in language model-
ing.

11.5.2 Beam search

The Viterbi CKY algorithm can be slow, especially if modifications to the grammar increase the nonter-
minal alphabet a lot. We can use beam search to speed up the search if we are willing to allow potential
search errors.

After the completion of each chart cell best[i , j], do the following:

1: for all X ∈ N do
2: score[X] ← best[i , j][X]×h(X)
3: end for
4: choose minscore
5: for all X ∈ N do
6: if score[X] < minscore then
7: end if
8: delete best[i , j][X]
9: delete back[i , j][X]

10: end for

The function h(X) is called a heuristic function and is meant to estimate the relative probability of
getting from S at the root down to X . The typical thing to do is to let h(X) be the frequency of X in the
training data.

There are two common ways of choosing minscore (line 4):

• minscore =
(
max

X
score[X]

)
×β, where 0 <β< 1 (typical values: 10−3 to 10−5)

• minscore is the score of the b’th best member of score (typical values of b: 10–100)

It is also fine to set minscore to the larger of these two values.

CSE 40657/60657: Natural Language Processing Version of October 1, 2018

Chapter 11. Statistical Parsing 82

Question The time complexity of CKY is normally O (n3|N |3), because we have to loop over i , j ,k, X ,Y ,
and Z . If we add beam search, what will the time complexity be in terms of n and b? Assume b < |N |.

11.6 Partially Unsupervised Training

The linguistically-motivated tree transformations we discussed previously are very effective, but when
we move to a new language, we may have to come up with new ones. It would be nice if we could auto-
matically discover these transformations. Suppose that we have a grammar defined over nonterminals
of the form X [q], where X is a nonterminal from the training data (e.g., NP) and q is a number between
1 and k (for simplicity, let’s say k = 2). We only observe trees over nonterminals X , but need to learn
weights for our grammar. This is possible, and quite effective (Matsuzaki, Miyao, and Tsujii, 2005; Petrov
et al., 2006).

Suppose our first training example is the following tree, T :

S

VP

NP

NN

dog

DT

the

VBD

saw

NP

NN

cat

DT

the

And suppose that our initial grammar is:

DT[1]
1−→ the

DT[2]
1−→ the

NN[1]
0.2−−→ cat

NN[1]
0.8−−→ dog

NN[2]
0.7−−→ cat

NN[2]
0.3−−→ dog

VBD[1]
1−→ saw

VBD[2]
1−→ saw

S[1]
0.2−−→ NP[1] VP[1]

S[1]
0.4−−→ NP[1] VP[2]

S[1]
0.1−−→ NP[2] VP[1]

S[1]
0.3−−→ NP[2] VP[2]

S[2]
0.5−−→ NP[1] VP[1]

S[2]
0.1−−→ NP[1] VP[2]

S[2]
0.2−−→ NP[2] VP[1]

S[2]
0.2−−→ NP[2] VP[2]

NP[1]
0.2−−→ DT[1] NN[1]

NP[1]
0.4−−→ DT[1] NN[2]

NP[1]
0.1−−→ DT[2] NN[1]

NP[1]
0.3−−→ DT[2] NN[2]

NP[2]
0.5−−→ DT[1] NN[1]

NP[2]
0.1−−→ DT[1] NN[2]

NP[2]
0.2−−→ DT[2] NN[1]

NP[2]
0.2−−→ DT[2] NN[2]

VP[1]
0.2−−→ VBD[1] NP[1]

VP[1]
0.4−−→ VBD[1] NP[2]

VP[1]
0.1−−→ VBD[2] NP[1]

VP[1]
0.3−−→ VBD[2] NP[2]

VP[2]
0.5−−→ VBD[1] NP[1]

VP[2]
0.1−−→ VBD[1] NP[2]

VP[2]
0.2−−→ VBD[2] NP[1]

VP[2]
0.2−−→ VBD[2] NP[2]

Notice the bracketed numbers that we have added to the nonterminals. This grammar has many
possible derivations, all of which generate the same tree modulo the bracketed numbers. We’ve initial-
ized the rule probabilities randomly, and our goal is to optimize the rule probabilities to maximize the
(log-)likelihood of the trees in the training data. The hope is that we can automatically learn ways of aug-
menting the nonterminals that perform as well or better than the linguistically-motivated augmentations
we saw earlier.

CSE 40657/60657: Natural Language Processing Version of October 1, 2018

Chapter 11. Statistical Parsing 83

11.6.1 On trees

If we want to do hard EM, we need to do:

• E step: find the highest-weight derivation of the grammar that matches the observed tree (modulo
the annotations [q]).

• M step: re-estimate the weights of the grammar by counting the rules used in the derivations found
in the E step, and normalize.

The M step is easy. The E step is essentially Viterbi CKY, only easier because we’re given a tree instead of
just a string. The chart for this algorithm looks like the following, where each cell works exactly like the
cells in CKY. Can you fill in the rest?

CSE 40657/60657: Natural Language Processing Version of October 1, 2018

Chapter 11. Statistical Parsing 84

dogthe

saw

NP[1] 0.28
NP[2] 0.14

NN[1] 0.2
NN[2] 0.7

cat

DT[1] 1
DT[2] 1

the

11.6.2 On strings

Another scenario is that we’re given only strings instead of trees, and we have some grammar that we
want to learn weights for. For example, if we train a grammar on the Wall Street Journal portion of the
Penn Treebank, but we want to learn a parser for Twitter. This kind of domain adaptation problem is

CSE 40657/60657: Natural Language Processing Version of October 1, 2018

Chapter 11. Statistical Parsing 85

S

Xi , j

outside[Xi , j]

inside[Xi , j]

Figure 11.1: The inside probability of Xi , j is the total weight of all subtrees rooted in Xi , j (gray), and the
outside probability is the total weight of all tree fragments with a “broken-off” node Xi , j (white).

often solved using something similar to hard EM.

• Extract the grammar rules and initialize the weights by training on the labeled training data (in our
example, the WSJ portion of the Treebank).

• E step: find the highest-weight tree of the grammar for each string in the unlabeled training data
(in our example, the Twitter data).

• M step: re-estimate the weights of the grammar.

The E/M steps can be repeated, though in practice one might find that one iteration works the best.
The following optional section presents the machinery that we need in order to do real EM on either

strings or trees.

11.7 Inside/outside probabilities (optional)

Recall that when training a weighted FSA using EM, the key algorithmic step was calculating forward and
backward probabilities. The forward probability of a state q is the total weight of all paths from the start
state to q , and the backward probability is the total weight of all paths from q to any final state. We can
define a similar concept for a node (nonterminal symbol) in a forest.

The inside probability of a node Xi , j is the total weight of all derivations Xi , j ⇒∗ w , where w is any
string of terminal symbols. That is, it is the total weight of all subtrees derivable by Xi , j .

The outside probability is the total weight of all derivations S ⇒∗ v Xi , j w , where v and w are strings of
terminal symbols. That is, it is the total weight of all tree fragments with root S and a single “broken-off”
node Xi , j (see Figure 11.1).

We leave it as an exercise for the reader to figure out how to calculate the total weight of all deriva-
tions. The intermediate values of this calculation are the inside probabilities. How about the outside
probabilities? This computation proceeds top-down. To compute the outside probability of Yi ,k , we look
at its possible parents Xi , j and siblings Zk, j . For each, we can compute the total weight of the outside

CSE 40657/60657: Natural Language Processing Version of October 1, 2018

Chapter 11. Statistical Parsing 86

P (X → Y Z)

S

Xi , j

Yi ,k Zk, j

outside[Xi , j]

inside[Zk, j]inside[Yi ,k]

Figure 11.2: To compute the outside probability of Yi ,k , we use the outside probability of Xi , j and the
inside probability of Zk, j .

part of all derivations going through these three nodes: it is outside[Xi , j] ·P (X → Y Z) · inside[Zk, j]. If we
sum over all possible parents and siblings (both left and right), we get the outside probability of Yi ,k .

More precisely, the algorithm looks like this:

Require: string w = w1 · · ·wn and grammar G = (N ,Σ,R,S)
Require: inside[Xi , j] is the inside probability of Xi , j

Ensure: outside[Xi , j] is the outside probability of Xi , j

for all X , i , j do
initialize outside[Xi , j] ← 0

end for
outside[S,0,n] ← 1
for ℓ← n,n −1, . . . ,2 do ▷ top-down

for i ← 0, . . . ,n −ℓ do
j ← i +ℓ

for k ← i +1, . . . , j −1 do

for all (X
p−→ Y Z) ∈ R do

outside[Yi ,k] ← outside[Yi ,k]+outside[Xi , j] ·p · inside[Zk, j]
outside[Zk, j] ← outside[Zk, j]+outside[Xi , j] ·p · inside[Yi ,k]

end for
end for

end for
end for

Question 12. Fill in the rest of the details for EM training of a PCFG.

1. What is the total weight of derivations going through a forest edge Xi , j → Yi ,k Zk, j ?

CSE 40657/60657: Natural Language Processing Version of October 1, 2018

Chapter 11. Statistical Parsing 87

2. What is the fractional count of this edge (probability of using this edge given input string w)?

3. How do you compute the fractional count of a production X → Y Z (probability of using this pro-
duction given input string w)?

4. How do you reestimate the probability of a production X → Y Z ?

With some additional tricks (Petrov et al., 2006), this method can be made to learn a different number
of q ’s for each nonterminals, and the result is a very good parser. Other parsers have surpassed it in
parsing accuracy, but this method remains the best way to train a PCFG.

CSE 40657/60657: Natural Language Processing Version of October 1, 2018

Bibliography

Black, E. et al. (1991). “A procedure for quantitatively comparing the syntactic coverage of English gram-
mars”. In: Proc. DARPA Speech and Natural Language Workshop, pp. 306–311.

Collins, Michael (1999). “Head-Driven Statistical Models for Natural Language Parsing”. PhD thesis. Uni-
versity of Pennsylvania.

Johnson, Mark (1998). “PCFG models of linguistic tree representations”. In: Computational Linguistics
24, pp. 613–632.

Klein, Dan and Christopher D. Manning (2003). “Accurate Unlexicalized Parsing”. In: Proc. ACL, pp. 423–
430.

Matsuzaki, Takuya, Yusuke Miyao, and Jun’ichi Tsujii (2005). “Probabilistic CFG with Latent Annota-
tions”. In: Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics
(ACL’05), pp. 75–82. URL: http://www.aclweb.org/anthology/P05-1010.

Miller, Scott et al. (1996). “A Fully Statistical Approach to Natural Language Interfaces”. In: Proc. ACL,
pp. 55–61.

Petrov, Slav et al. (2006). “Learning Accurate, Compact, and Interpretable Tree Annotation”. In: Proceed-
ings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the
Association for Computational Linguistics, pp. 433–440. URL: http://www.aclweb.org/anthology/
P06-1055.

88

