
Chapter 5

Text Input

5.1 Problem

In the last two chapters we looked at language models, and in your first homework you are building
language models for English and Chinese to enable the computer to guess the next work that the user
will type. Now, what if we want the computer to actually correct typos? We can use a hidden Markov
model (HMM) do to this. HMMs are useful for a lot of other things besides, but typo correction is a good
simple example.

5.2 Hidden Markov Models

5.2.1 Definition

Instead of thinking directly about finding the most probable sequence of true characters, we think about
how the sequence might have come to be. Let w = w1 · · ·wn be a sequence of observed characters and let
t = t1 · · · tn be a sequence of true characters that the user wanted to type. To distinguish between the two,
we’ll write observed characters in typewriter font and intended characters in sans-serif font.

arg max
t

P (t | w) = arg max
t

P (t,w) (5.1)

P (t,w) = P (t)P (w | t). (5.2)

The first term, P (t), can be described using a language model, for example, a bigram model:

P (t) = p(t1 | <s>)×
(

n∏
i=2

p(ti | ti−1)

)
×p(</s> | tn). (5.3)

The second term is even easier:

P (w | t) =
n∏

i=1
p(wi | ti). (5.4)

This is a hidden Markov model (HMM). If we’re given labeled data, like

t t y p e
w t h p e

25

Chapter 5. Text Input 26

then the HMM is easy to train. But what we don’t know how to do is decode: given w, what’s the most
probable t? It is not good enough to say that our best guess for ti is

t̂i = arg max
t

p(t | ti−1)p(wi | t) (wrong).

Why? Imagine that the user types thpe. At the time he/she presses h, it seems like a very plausible letter
to follow t. But when he/she types pe, it becomes clear that there was a typo. We now go back and realize
that h was meant to be y. So what we really want is

t̂ = arg max
t

P (t | w) = arg max
t

P (t)P (w | t). (5.5)

Naively, this would seem to require searching over all possible t, of which there are exponentially many.
But below, we’ll see how to do this efficiently, not just for HMMs but for a much broader class of models.

5.2.2 Decoding

Suppose that our HMM has the parameters shown in Table 5.1. (In reality, of course, there would be many
more.)

Now, given the observed characters thpe, we can construct a FSA that generates all possible se-
quences of true characters for this sentence. See Figure 5.1. For an HMM, this FSA always has a very
predictable form. (Later, we will generalize to other models beyond HMMs.) If the observed sequence is
w = w1 · · ·wn , and the alphabet size is |Σ|, then the states form a grid with |Σ| rows and n+2 columns. (In
Figure 5.1, there are fewer than |Σ| = 5 rows because we’ve omitted some possible states to save space.)
Call each state qi ,t where 0 ≤ i ≤ n and t ∈ Σ. The meaning of each such state is that we are at time step
i and the previous true character is t . The start state is q0,<s> and the accept state is qn+1,</s>. There’s a
transition from every state qi−1,t to every state qi ,t ′ with weight p(t ′ | t)p(wi | t ′).

Each path through this FSA corresponds to a possible true string t that the user may have meant to
type, and the weight of each path is P (t,thpe). Our goal is to find the highest-weight path through M .
We can do this efficiently using the Viterbi algorithm, originally invented for decoding error-correcting
codes. It works not only on FSAs of the form described above, but any acyclic FSA.

The Viterbi algorithm is a classic example of dynamic programming. We need to visit the states of M
in topological order, that is, so that all the transitions go from earlier states to later states in the ordering.
For the example above, the states are all named qi ,σ; we visit them in order of increasing i . For each state
q , we want to compute the weight of the best path from the start state to q . This is easy, because we’ve
already computed the best path to all of the states that come before q . We also want to record which
incoming transition is on that path. The algorithm goes like this:

viterbi[q0] ← 1
viterbi[q] ← 0 for q ̸= q0

for each state q ′ in topological order do
for each incoming transition q → q ′ with weight p do

if viterbi[q]×p > viterbi[q ′] then
viterbi[q ′] ← viterbi[q]×p
pointer[q ′] ← q

end if
end for

end for

CSE 40657/60657: Natural Language Processing Version of September 7, 2018

Chapter 5. Text Input 27

p(t ′ | t) p(w | t)
t

t ′ <s> e h p t y
e 0.2 0.2 0.5 0.2 0.1 0.4
h 0.2 0.1 0 0.1 0.6 0
p 0.1 0.1 0 0.2 0 0.1
t 0.4 0.2 0.1 0.1 0.1 0.1
y 0.1 0.1 0 0.2 0.1 0

</s> 0 0.3 0.4 0.2 0.1 0.4

t
w e h p t y
e 1 0 0 0.5 0
h 0 0.5 0 0 0.25
p 0 0 1 0 0
t 0 0 0 0.5 0.25
y 0 0.5 0 0 0.5

Table 5.1: Example parameters of an HMM.

q0,<s>

q1,t

q1,y

q2,h

q2,y

q3,p q4,e

q4,t

q5,</s>

t / 0.4 ·0
.5

y / 0.1 ·0.25

h / 0.6 ·0.5

y
/ 0.1 ·0.25

h / 0 ·0
.5

y / 0 ·0.25

p / 0 ·1

p / 0.
1 ·1

e / 0.2 ·1

t / 0.1 ·0.5

</s> / 0.3

</s> / 0.1

Figure 5.1: Weighted finite automaton for all possible true characters corresponding to the observed
characters thpe.

CSE 40657/60657: Natural Language Processing Version of September 7, 2018

Chapter 5. Text Input 28

Then the maximum weight is viterbi[q f], where q f is the final state.

Question 2. How do you use the pointers to reconstruct the best path?

5.3 Hidden Markov Models (Unsupervised)

Above, we assumed that the model was given to us. If we had parallel data, that is, data consisting of pairs
of strings where one string has typos and the other string is the corrected version, then it’s easy to train
the model (just count and divide). This kind of data is called complete because it consists of examples of
exactly the same kind of object that our model is defined on.

What if we have incomplete data? For example, what if we only have a collection of strings with typos
and a collection of strings without typos, but the two collections are not parallel? We can still train the
language model as before, but it’s no longer clear how to train the typo model. To do this, we need a
fancier (and slower) training method. We’ll first look at a more intuitive version, and then a better version
that comes with a mathematical guarantee.

The basic idea behind both methods is a kind of bootstrapping: start with some model, not necessar-
ily a great one. For example,

p(w | t) =
{

2
|Σt |+1 if t = w

1
|Σt |+1 if t ̸= w

where Σt is the alphabet of true characters.
Now that we have a model, we can correct the typos in the typo part of the training data. This gives

us a collection of parallel strings, that is, pairs of strings where one string has typos and the other string
is its corrected version. The corrections might not be great, but at least we have parallel data.

Then, use the parallel data to re-train the model. This is easy (just count and divide). The question is,
will this new model be better than the old one?

5.3.1 Hard Expectation-Maximization

“Hard” Expectation-Maximization is the “hard” version of the method we’ll see in the next section. It’s
“hard” not because it’s hard to implement but because when it corrects the typo part of the training data,
it makes a hard decision; that is, it commits to one and only one correction for each string. We’ve seen
already that we can do this efficiently using the Viterbi algorithm.

In pseudocode, hard EM works like this. Assume that we have a collection of N observed strings,
w(1),w(2), . . .w(N).

initialize the model
repeat

for each observed string: w(i) do ▷ Viterbi E step
compute the best correction, t̂ = arg maxt P (t | w(i))
for each position j do

c(t̂,w(i)
j) += 1

end for
end for
for all w, t do ▷ M step

p(w | t) = c(t ,w)∑
w ′ c(t ,w ′)

CSE 40657/60657: Natural Language Processing Version of September 7, 2018

Chapter 5. Text Input 29

end for
until converged

In practice, this method is easy to implement, and can work very well. Let’s see what happens when
we try this on some real data. The corrected part is 50,000 lines from an IRC channel for Ubuntu technical
support. (Actually this data has some typos, but we pretend it doesn’t.) The typo part is another 50,000
lines with typos artificially introduced.

Using the initial model, we get corrections like:

observed: bootcharr? i recall is habdy.
guess: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

But some are slightly less bad, like:

observed: Hello :)
guess: I the t?

After a few iterations, these two lines have improved to:

observed: bootcharr? i recall is habdy.
guess: tootcharr? i recath is hathe.

and

observed: Hello :)
guess: I tho e)

So it’s learned to recover the fact that letters usually stay the same, but it still introduces more errors
than it corrects.

5.3.2 Expectation-Maximization

Above, we saw that the initial model sometimes corrects strings to all carets (^) and sometimes to strings
with lots of variations on the word the. What if all the strings were of the former type? The model would
forget anything about any true character other than ^, and it would get stuck in this condition forever.

More generally, when the model looks at a typo string, it defines a whole distribution over possible
corrections of the string. For example, the initial model likes ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ best,
but it also knows that just leaving everything alone is better than random characters. When we take only
the model’s best guess, we throw away potentially useful information.

More formally, if we have an observed string w, the model defines a distribution over possible correc-
tions:

P (t | w) = P (w | t)P (t)

P (w)

= P (w | t)P (t)∑
t′ P (w | t′)P (t′)

. (5.6)

In hard EM, we just took the highest-probability t from this distribution and pretended that we saw that
as training data. In true EM, we consider every possible t and pretend that we saw it P (t | w) times. The
idea of a fractional count is intuitively somewhat strange, but mathematically not a problem: we estimate
probabilities by counting and dividing, and that works just as well when the counts are fractional.

The rest of this section describes how to do this. As a preview, when we use true EM, our two examples
from above become:

CSE 40657/60657: Natural Language Processing Version of September 7, 2018

Chapter 5. Text Input 30

observed: bootcharr? i recall is habdy.
guess: bootcharr, i recall is hably.

and

observed: Hello :)
guess: Hello :)

Still not perfect, but better. A stronger language model would know that “hably” is not a word.

Slow version of EM

Here’s some pseudocode, but it’s inefficient and should not be implemented.

1: initialize the model
2: repeat
3: for each observed string w(i) do ▷ E step
4: for every possible correction t do ▷ intractable!
5: compute P (t | w(i))
6: for each position j do
7: c(t j ,w(i)

j) += P (t | w(i))

8: end for
9: end for

10: end for
11: for all w, t do ▷ M step
12: p(w | t) = c(t ,w)∑

w ′ c(t ,w ′)
13: end for
14: until converged

The loop at line 4 is over an exponential number of corrections t, which is not practical. Actualy, it’s worse
than that, because according to equation (5.6), to even compute a single P (t | w(i)) requires that we divide
by P (w(i)), and this requires a sum over all t′.

Forward algorithm

Let’s tackle this problem first: how do we compute P (w) efficiently? Just as the Viterbi algorithm uses
dynamic programming to maximize over all t′ efficiently, there’s an efficient solution to sum over all t′.
It’s a tiny modification to the Viterbi algorithm. We assume, as before, that we have a finite automaton
that compactly represents all possible t (e.g., Figure 5.1), and the weight of a path is the probability P (t,w).

forward[q0] ← 1
forward[q] ← 0 for q ̸= q0

for each state q ′ in topological order do
for each incoming transition q → q ′ with weight p do

forward[q ′] += forward[q]×p
end for

end for

This is called the forward algorithm. The only difference is that wherever the Viterbi algorithm took a
max of two weights, the forward algorithm adds them. Assuming that the automaton has a single final
state q f , we have forward[q f] = P (w), the total probability of all the paths in the automaton.

CSE 40657/60657: Natural Language Processing Version of September 7, 2018

Chapter 5. Text Input 31

Fast version of EM

Now let’s return to our pseudocode for EM. How do we do the loop over t efficiently? We rewrite the
pseudocode in terms of the finite automaton and reorder the loops so that, instead of looping over all
positions of all t, we now loop over the transitions of this automaton:

1: initialize the model
2: repeat
3: for each observed string w(i) do ▷ E step
4: form automaton that generates all possible t with weight P (t,w(i))
5: compute P (w(i)) ▷ forward algorithm
6: for every transition e = (qi ,t → qi+1,t ′) do
7: compute weight p of all paths using transition e
8: c(t ′, wi+1) += p/P (w(i)) ▷ because e corrects wi+1 to t ′
9: end for

10: end for
11: for all w, t do ▷ M step
12: p(w | t) = c(t ,w)∑

w ′ c(t ,w ′)
13: end for
14: until converged

Line 7 computes the total weight of all paths that go through transition e. To compute this, we need an
additional helper function.

Backward algorithm

The backward weights are the mirror image of the forward weights: the backward weight of state q ,
written backward[q], is the total weight of all paths from q to the final state q f .

backward[q f] ← 1
backward[q] ← 0 for q ̸= q f

for each state q in reverse topological order do
for each outgoing transition q → q ′ with weight p do

backward[q] += p ×backward[q ′]
end for

end for

Note that forward[q f] = backward[q0]; both are equal to P (w(i)), the total weight of all paths. When
implementing the forward and backward algorithms, it’s helpful to check this.

One more thing. . .

Now given transition e = (q
p−→ r), we want to use these quantities to compute the total weight of all paths

using transition e. The total weight of all paths going into q is forward[q], and the weight of e itself is p,
and the total weight of all paths going out of r is backward[r], so by multiplying all three of these together,
we get the total weight of all paths going through e. See Figure 5.3.

So, we can implement line 7 above as

c(t ′, wi+1) += forward[q]×p ×backward[r]

forward[q f]
. e = (q

p−→ r) (5.7)

CSE 40657/60657: Natural Language Processing Version of September 7, 2018

Chapter 5. Text Input 32

q0,<s>
1

q1,t
0.2

q1,y
0.025

q2,h
0.06

0

q2,y
0.005

0

q3,p
0

0.0005

q4,e
0.0001

q4,t
0.000025

q5,</s>
0.00003

0.0000025

t / 0.4 ·0
.5

y / 0.1 ·0.25

h / 0.6 ·0.5

y
/ 0.1 ·0.25

h / 0 ·0
.5

y / 0 ·0.25

p / 0 ·1

p / 0.
1 ·1

e / 0.2 ·1

t / 0.1 ·0.5

</s> / 0.3

</s> / 0.1

Figure 5.2: Example run of the Viterbi algorithm on the FSA of Figure 5.1. Probabilities are written inside
states; probabilities that are not maximum are struck out. The incoming edge that gives the maximum
probability is drawn with a thick rule.

q0 qforward[q] r q fbackward[r]

(a) (b)

q0 q r q fforward[q]
a / p

backward[r]

(c)

Figure 5.3: (a) The forward probability α[q] is the total weight of all paths from the start state to q . (b)
The backward probability β[q] is the total weight of all paths from to q to the final state. (c) The total
weight of all paths going through an edge q → r with weight p is forward[q]×p ×backward[r].

CSE 40657/60657: Natural Language Processing Version of September 7, 2018

Chapter 5. Text Input 33

That completes the algorithm.
The remarkable thing about EM is that each iteration is guaranteed to improve the model, in the

following sense. We measure how well the model fits the training data by the log-likelihood,

L =∑
i

logP (w(i)).

In other words, a model is better if it assigns more probability to the strings we observed (and less proba-
bility to the strings we didn’t observe). Each iteration of EM is guaranteed either to increase L, or else the
model was already at a local maximum of L. Unfortunately, there’s no guarantee that we will find a global
maximum of L, so in practice we sometimes run EM multiple times from different random initial points.

5.4 Finite-State Transducers

HMMs are used for a huge number of problems, not just in NLP and speech but also in computational
biology and other fields. But they can get tricky to think about if the dependencies we want to model get
complicated. For example, what if we want to use a trigram language model instead of a bigram language
model? It can definitely be done with an HMM, but it might not be obvious how. If we want a text input
method to be able to correct inserted or deleted characters, we really need something more flexible than
an HMM.

In the last chapter, we saw how weighted finite-state automata provide a flexible way to define proba-
bility models over strings. But here, we need to do more than just assign probabilities to strings; we need
to be able to transform them into other strings. To do that, we need finite-state transducers.

5.4.1 Definition

A finite-state transducer is like a finite-state automaton, but has both an input alphabet Σ and an output
alphabet Σ′. The transitions look like this:

q r
a : a′ / p

where a ∈Σ, a′ ∈Σ′, and p is the weight. For now, we don’t allow either a or a′ to be ϵ.
Whereas a FSA defines a set of strings, a FST defines a relation on strings (that is, a set of pairs of

strings). A string pair 〈w, w ′〉 belongs to this relation if there is a sequence of states q0, . . . , qn such that

for all i , there is a transition qi−1
wi :w ′

i−−−−→ qi .
For now, the FSTs we’re considering are deterministic in the sense that given an input/output string

pair, there’s at most one way for the FST to accept it. But given just an input string, there can be more
than one output string that the FST can generate.

A weighted FST adds a weight to each transition. The weight of an accepting path through a FST is
the product of the weights of the transitions along the path.

A probabilistic FST further has the property that for each state q and input symbol a, the weights of
all of the transitions leaving q with input symbol a or ϵ sum to one. Then the weights of all the accepting
paths for a given input string sum to one. That is, the WFST defines a conditional probability distribution
P (w ′ | w).

So a probabilistic FST is a way to define P (w | t). Let’s consider a more sophisticated typo model that
allows insertions and deletions. For simplicity, we’ll restrict the alphabet to just the letters e and r. The
typo model now looks like this:

CSE 40657/60657: Natural Language Processing Version of September 7, 2018

Chapter 5. Text Input 34

q0

q1

q2

r : r
r : e
e : r
e : e
ϵ : e
ϵ : r

e : ϵ
r : ϵ

</s> : </s>

r : r
r : e
e : r
e : e

</
s>

: <
/s

>

Note that this allows at most one deletion at each position. The reason for this will be explained below.
Here’s the same FST again, but with probabilities shown. Notice which transition weights sum to one.

q0

q1

q2

r : r / 0.4
r : e / 0.2
e : r / 0.2
e : e / 0.4
ϵ : e / 0.1
ϵ : r / 0.1

e : ϵ / 0.2
r : ϵ / 0.2

</s> : </s> / 0.8

r : r / 0.6
r : e / 0.4
e : r / 0.4
e : e / 0.6

</
s>

: <
/s

> / 1

(5.8)

CSE 40657/60657: Natural Language Processing Version of September 7, 2018

Chapter 5. Text Input 35

For example, for state q0 and symbol e, we have

q0
e:r−→ q0 0.2

q0
e:e−−→ q0 0.4

q0
ϵ:e−−→ q0 0.1

q0
ϵ:r−→ q0 0.1

q0
e:ϵ−−→ q1 0.2

1

5.4.2 Composition

We have a probabilistic FSA, call it M1, that generates sequences of true characters (a bigram model):

q0 q1 q2

r : r e : e

</s> : </s>

r : r

e : e

</s> : </s> (5.9)

And we have a probabilistic FST, call it M2, that models how the user might make typographical errors,
shown above (5.8). Now, we’d like to combine them into a single machine that models both at the same
time.

We’re going to do this using FST composition. First, change M1 into a FST that just copies its input to
its output. We do this by replacing every transition

q
a/p−−→ r

with

q
a:a/p−−−−→ r.

Then, we want to feed its output to the input of M2. In general, we want to take any two FSTs M1

and M2 and make a new FST M that is equivalent to feeding the output of M1 to the input of M2 – this
is the composition of M1 and M2. More formally, we want a FST M that accepts the relation {〈u, w〉 |
∃v s.t. 〈u, v〉 ∈ L(M1), 〈v, w〉 ∈ L(M2)}.

If you are familiar with intersection of FSAs, this construction is quite similar. The states of M are
pairs of states from M1 and M2. For brevity, we write state 〈q1, q2〉 as q1q2. The start state is s1s2, and

the final states are F1 ×F2. Then, for each transition q1
a:b−−→ r1 in M1 and q2

b:c−−→ r2 in M2, make a new

transition q1q2
a:c−−→ r1r2. If the two old transitions have weights, the new transition gets the product of

their weights.
If we create duplicate transitions, you can either merge them while summing their weights, or some-

times it’s more convenient to just leave them as duplicates.

CSE 40657/60657: Natural Language Processing Version of September 7, 2018

Chapter 5. Text Input 36

For example, the composition of our bigram language model and typo model is:

q0q0 q0q1

q1q1 q1q0

q2q2

r : r
r : e
ϵ : r
ϵ : e

r : ϵ

e
:ϵ

e : ee : r

</
s>

: <
/s

>

r : r
r : e

e
:e

e
:r

</s>
: </s>

r
:r

r
:e

e : e
e : r

</s>
: </s>

r : rr : e r
:ϵ

e : ϵ

e
:e

e
:r

ϵ
:e

ϵ
:r

</
s>

: <
/s

>
(5.10)

This is our typo-correction model in the form of a FST. Now, how do we use it? Given a string w of
observed characters, construct an FST Mw that accepts only the string w as input and outputs the same
string.

q0 q1 q2 q3 q4
e : e e : e r : r </s> : </s>

(5.11)

Now, if we compose Mw with the model, we get a new FST that accepts as input all and only the possible
true character sequences w , and outputs only the string w . That FST looks like this:

CSE 40657/60657: Natural Language Processing Version of September 7, 2018

Chapter 5. Text Input 37

q1q1q0 q0q0q0 q1q0q1 q0q1q0

q1q1q1 q0q0q1 q1q0q2 q0q1q1

q1q1q2 q0q0q2 q1q0q3 q0q1q2

q1q1q3 q0q0q3 q0q1q3

q2q2q4

e : e

r : e

e : e

r : e

e : r

r : r

</s> : </s>

e : ϵ e : e

r : ϵ

ϵ
:e,r

:e

e : ϵ e : e

r : ϵ

ϵ
:e,r

:e
e : ϵ e : r

r : ϵ

ϵ
:r,r

:r

e : ϵ

r : ϵ

</s>
:</s>

e : ϵ ϵ
:e,e

:e r : ϵ

r :
e

e : ϵ ϵ
:r,e

:r r : ϵ

r :
r

e : ϵ

r : ϵ

</
s>

: <
/s

>

e : e

r : e

e : e

r : e

e : r

r : r

</s> : </s>

(5.12)
Finally, if we ignore the output labels (the observed characters) and look at the input labels (the true

characters), we have an automaton that generates all possible things that the user originally typed. We
have omitted weights for clarity, but the weight of each path would be the probability p(w | t). By running
the Viterbi algorithm on this FSA, we find the best sequence of true characters.

CSE 40657/60657: Natural Language Processing Version of September 7, 2018

Bibliography

Karpathy, Andrej, Justin Johnson, and Li Fei-Fei (2016). “Visualizing and Understanding Recurrent Neural
Networks”. In: Proc. ICLR.

38

