
Chapter 12

Parsing Algorithms

12.1 Introduction
In this chapter, we explore the parsing problem, which encompasses several questions, including:

• Does L(G) contain w?
• What is the highest-weight derivation of w?
• What is the set of all derivations of w?

12.2 Chomsky normal form
Let’s assume that G has a particularly simple form. We say that a CFG is in Chomsky normal form if
each of its productions has one of the following forms:

X → Y Z

X → a

It can be shown (see below) that any context-free grammar not generating a language containing ϵ
can be converted into Chomsky normal form, and still generate the same language.

68



Chapter 12. Parsing Algorithms 69

Our grammar from above can be massaged to be in Chomsky normal form:
S→ NP VP

NP→ DT NN
NP→ time | fruit
NP→ NN NNS
VP→ VBP NP
VP→ flies
VP→ VP PP
PP→ IN NP
DT→ a | an
NN→ time | fruit | arrow | banana
NNS→ flies
VBP→ like
IN→ like

(12.1)

12.3 The CKY algorithm
TheCKY algorithm is named after three people who independently invented it: Cocke, Kasami, and
Younger, although it has been rediscovered more times than that.

In its most basic form, the algorithm just decides whether w ∈ L(G). It builds a data structure
known as a chart; it is an n × n array. The element chart[i, j] is a set of nonterminal symbols. If
X ∈ chart[i, j], then that means we have discovered that X ⇒∗ wi+1 · · ·wj .
Require: string w = w1 · · ·wn and grammar G = (N,Σ, R, S)
Ensure: w ∈ L(G) iff S ∈ chart[0, n]
1: initialize chart[i, j]← ∅ for all 0 ≤ i < j ≤ n
2: for all i← 1, . . . , n and (X → wi) ∈ R do
3: chart[i− 1, i]← chart[i− 1, i] ∪ {X}
4: end for
5: for ℓ← 2, . . . , n do
6: for i← 0, . . . , n− ℓ do
7: j ← i+ ℓ
8: for k ← i+ 1, . . . , j − 1 do
9: for all (X → Y Z) ∈ R do
10: if Y ∈ chart[i, k] and Z ∈ chart[k, j] then
11: chart[i, j]← chart[i, j] ∪ {X}
12: end if
13: end for
14: end for
15: end for
16: end for
Question 7. What is the time and space complexity of this algorithm?

CSE 40657/60657: Natural Language Processing Version of October 7, 2019



Chapter 12. Parsing Algorithms 70

Question 8. Using the grammar (12.1), run the CKY algorithm on the string:

0 time 1 flies 2 like 3 an 4 arrow 5

0,1 0,2 0,3 0,4 0,5

1,2 1,3 1,4 1,5

2,3 2,4 2,5

3,4 3,5

4,5

CSE 40657/60657: Natural Language Processing Version of October 7, 2019



Chapter 12. Parsing Algorithms 71

12.4 Viterbi CKY
But it is much more useful to find the highest-weight parse. Suppose that our grammar has the
following probabilities:

S 1−→ NP VP
NP 0.5−−→ DT NN
NP 0.2−−→ time
NP 0.2−−→ fruit
NP 0.1−−→ NNNNS
VP 0.6−−→ VBP NP
VP 0.3−−→ flies
VP 0.1−−→ VP PP
PP 1−→ IN NP

DT 0.5−−→ a
DT 0.5−−→ an
NN 0.25−−→ time
NN 0.25−−→ fruit
NN 0.25−−→ arrow
NN 0.25−−→ banana
NNS 1−→ flies
VBP 1−→ like
IN 1−→ like

(12.2)

Then we use a modification of CKY that is analogous to the Viterbi algorithm. First, we modify
the algorithm to find the maximum weight:
Require: string w = w1 · · ·wn and grammar G = (N,Σ, R, S)
Ensure: best[0, n][S] is the maximum weight of a parse of w
1: initialize best[i, j][X]← 0 for all 0 ≤ i < j ≤ n,X ∈ N

2: for all i← 1, . . . , n and (X
p−→ wi) ∈ R do

3: best[i− 1, i][X]← max{best[i− 1, i][X], p}
4: end for
5: for ℓ← 2, . . . , n do
6: for i← 0, . . . , n− ℓ do
7: j ← i+ ℓ
8: for k ← i+ 1, . . . , j − 1 do
9: for all (X p−→ Y Z) ∈ R do
10: p′ ← p× best[i, k][Y ]× best[k, j][Z]
11: best[i, j][X]← max{best[i, j][X], p′}
12: end for
13: end for
14: end for
15: end for
Question 9. Do you see how to modify the algorithm to compute the total weight of all parses of
w?

A slight further modification lets us find themaximum-weight parse itself. Just as in the Viterbi
algorithm for FSAs, whenever we update best[i, j][X] to a new best weight, we also need to store

CSE 40657/60657: Natural Language Processing Version of October 7, 2019



Chapter 12. Parsing Algorithms 72

a back-pointer that records how we obtained that weight. We will represent back-pointers like this:
Xi,j → Yi,kZk,j means that we built an X spanning i, j from a Y spanning i, k and a Z spanning
k, j.

Require: string w = w1 · · ·wn and grammar G = (N,Σ, R, S)
Ensure: G′ generates the best parse of w
Ensure: best[0, n][S] is its weight
1: for all 0 ≤ i < j ≤ n,X ∈ N do
2: initialize best[i, j][X]← 0
3: initialize back[i, j][X]← nil
4: end for
5: for all i← 1, . . . , n and (X

p−→ wi) ∈ R do
6: if p > best[i− 1, i][X] then
7: best[i− 1, i][X]← p
8: back[i− 1, i][X]← (Xi−1,i → wi)
9: end if
10: end for
11: for ℓ← 2, . . . , n do
12: for i← 0, . . . , n− ℓ do
13: j ← i+ ℓ
14: for k ← i+ 1, . . . , j − 1 do
15: for all (X p−→ Y Z) ∈ R do
16: p′ ← p× best[i, k][Y ]× best[k, j][Z]
17: if p′ > best[i, j][X] then
18: best[i, j][X]← p′

19: back[i, j][X]← (Xi,j → Yi,kZk,j)
20: end if
21: end for
22: end for
23: end for
24: end for
25: G′ = {back[i, j][X] | 0 ≤ i < j ≤ n,X ∈ N}

G′ is then a grammar that generates at most one tree, the best tree for w.
Question 10. Using the grammar (12.2), run the Viterbi CKY algorithm on the same string:

0 time 1 flies 2 like 3 an 4 arrow 5

CSE 40657/60657: Natural Language Processing Version of October 7, 2019



Chapter 12. Parsing Algorithms 73

0,1 0,2 0,3 0,4 0,5

1,2 1,3 1,4 1,5

2,3 2,4 2,5

3,4 3,5

4,5

12.5 Parsing general CFGs
Previously, we learned about PCFGs, and how to find the best PCFG derivation of a string using
the Viterbi algorithm. Now we will extend those algorithms to the general CFG case.

12.5.1 Binarization
It turns out that any CFG (whose language does not contain ϵ) can be converted into an equivalent
grammar in Chomsky normal form.

To guarantee that k ≤ 2, wemust eliminate all rules with right-hand side longer than 2. Wewill
see below that the grammars we extract from training data may already have this property. But if
not, we need to binarize the grammar. For example, suppose we have the production

NP→ DT JJS NN NN PP (12.3)

which is too long to be in Chomsky normal form. There are many ways to break this down into
smaller rules, but here is one way. We create a bunch of new nonterminal symbols NP(β)where β
is a string of nonterminal symbols; this stands for a partial NP whose sisters to the left are β. Then

CSE 40657/60657: Natural Language Processing Version of October 7, 2019



Chapter 12. Parsing Algorithms 74

we replace rule (12.3) with:

NP→ DT NP(DT) (12.4)
NP(DT)→ JJS NP(DT,JJS) (12.5)

NP(DT,JJS)→ NNNP(DT,JJS,NN) (12.6)
NP(DT,JJS,NN)→ NNNP(DT,JJS,NN,NN) (12.7)

NP(DT,JJS,NN,NN)→ PP (12.8)

Note that the annotations contain enough information to reverse the binarization. So the binarized
grammar is equivalent to the unbinarized grammar, but has k ≤ 2.

12.5.2 Parsing with unary rules
But we are not done yet. CKY does not just require k ≤ 2, but also forbids rules of any of the
following forms:

A→ ab (12.9)
A→ aB (12.10)
A→ Ab (12.11)
A→ ϵ (12.12)
A→ B (12.13)

The first three cases are very easy to eliminate, but we never see them in grammars induced from
the Penn Treebank. Nullary rules (12.12) are not hard to eliminate (Hopcroft and Ullman, 1979), but
the weighted case can be nasty (Stolcke, 1995). Fortunately, nullary rules aren’t very common in
practice, so we won’t bother with them here.

Unary rules (12.13) are quite common and annoying. Like nullary rules, they are not hard to
eliminate from a CFG (Hopcroft and Ullman, 1979), but in practice, most people don’t try to; in-
stead, they extend the CKY algorithm to handle them directly. The extension shown below is not
the most efficient, but fits most naturally with the way we have implemented CKY.

Require: string w = w1 · · ·wn and grammar G = (N,Σ, R, S)
Ensure: w ∈ L(G) iff S ∈ chart[0, n]
1: initialize chart[i, j]← ∅ for all 0 ≤ i < j ≤ n
2: for all i← 1, . . . , n and (X → wi) ∈ R do
3: chart[i− 1, i]← chart[i− 1, i] ∪ {X}
4: end for
5: for ℓ← 2, . . . , n do
6: for i← 0, . . . , n− ℓ do
7: j ← i+ ℓ
8: for k ← i+ 1, . . . , j − 1 do
9: for all (X → Y Z) ∈ R do
10: if Y ∈ chart[i, k] and Z ∈ chart[k, j] then
11: chart[i, j]← chart[i, j] ∪ {X}
12: end if

CSE 40657/60657: Natural Language Processing Version of October 7, 2019



Chapter 12. Parsing Algorithms 75

13: end for
14: end for
15: again← true
16: while again do
17: again← false
18: for all (X → Y ) ∈ R do
19: if X /∈ chart[i, j] and Y ∈ chart[i, j] then
20: chart[i, j]← chart[i, j] ∪ {X}
21: again← true
22: end if
23: end for
24: end while
25: end for
26: end for
The new part is lines 15–24 and is analogous to the binary rule case.

Question Why is thewhile loop on line 16 necessary? What is itsmaximumnumber of iterations?

Here’s how to modify the Viterbi CKY algorithm to allow unary rules.
Require: string w = w1 · · ·wn and grammar G = (N,Σ, R, S)
Ensure: G′ generates the best parse of w
Ensure: best[0, n][S] is its weight
1: for all 0 ≤ i < j ≤ n,X ∈ N do
2: initialize best[i, j][X]← 0
3: initialize back[i, j][X]← nil
4: end for
5: for all i← 1, . . . , n and (X

p−→ wi) ∈ R do
6: if p > best[i− 1, i][X] then
7: best[i− 1, i][X]← p
8: back[i− 1, i][X]← (Xi−1,i → wi)
9: end if
10: end for
11: for ℓ← 2, . . . , n do
12: for i← 0, . . . , n− ℓ do
13: j ← i+ ℓ
14: for k ← i+ 1, . . . , j − 1 do
15: for all (X p−→ Y Z) ∈ R do
16: p′ ← p× best[i, k][Y ]× best[k, j][Z]
17: if p′ > best[i, j][X] then

CSE 40657/60657: Natural Language Processing Version of October 7, 2019



Chapter 12. Parsing Algorithms 76

18: best[i, j][X]← p′

19: back[i, j][X]← (Xi,j → Yi,kZk,j)
20: end if
21: end for
22: end for
23: again← true
24: while again do
25: again← false
26: for all (X p−→ Y ) ∈ R do
27: p′ ← p× best[i, j][Y ]
28: if p′ > best[i, j][X] then
29: best[i, j][X] = p′

30: back[i, j][X]← (Xi,j → Yi,j)
31: again← true
32: end if
33: end for
34: end while
35: end for
36: end for
37: G′ ← extract(S, 0, n)

If the grammar has unary cycles in it, that is, it is possible to deriveX ⇒ . . .⇒∗ X , then certain
complications can arise from the fact that a string may have an infinite number of derivations. In
particular, if the weight of the cycle is greater than 1, then the Viterbi CKY algorithm will break.
Even if all rule weights are less than 1, some algorithms require modification; for example, if we
want to find the total weight of all the derivations of a string, we have to perform an infinite sum-
mation (Stolcke, 1995). Therefore, it is fairly common to implement hacks of various kinds to break
the cycles. For example, we could modify the grammar so that it goes round the cycle at most five
times.
Question 11. Why doesn’t the Viterbi CKY algorithm break on unary cycles if we assume that all
rule weights are less than 1?

CSE 40657/60657: Natural Language Processing Version of October 7, 2019



Bibliography

Hopcroft, John E. and Jeffrey D. Ullman (1979). Introduction to Automata Theory, Languages, and Com-
putation. Reading, MA: Addison-Wesley.

Stolcke, Andreas (1995). “An Efficient Probabilistic Context-Free ParsingAlgorithm that Computes
Prefix Probabilities”. In: Computational Linguistics 21, pp. 165–201.

77


