
Chapter 11

Statistical Parsing

Given a corpus of trees, it is easy to extract a CFG and estimate its parameters. Every tree can
be thought of as a CFG derivation, and we just perform relative frequency estimation (count and
divide) on them. That is, let c(A → β) be the number of times that the rule A → β was observed,
and then

c(A) =
∑
β

c(A→ β) (11.1)

P̂ (A→ β | A) =
c(A→ β)

c(A)
(11.2)

11.1 Parser evaluation
Evaluation of parsers almost always uses labeled precision and recall or the labelled F1 score (Black
et al., 1991). To define this metric, we make use of the notion of a multiset, which is a set where
items can occur more than once. If A and B are multisets, define A(x) to be the number of times
that x occurs in A, and define

|A| =
∑
x

A(x) (11.3)

(A ∩B)(x) = min{A(x), B(x)} (11.4)
We view a tree as a multiset of brackets [X, i, j] for each node of the tree, whereX is the label of

the node and wi+1 · · ·wj is its span. Note that in Penn Treebank style trees, every word is an only
child and its parent is a part-of-speech tag. The part-of-speech tag nodes (also called preterminal
nodes) are not included in the multiset.

Let t (for test) be the parser output and g (for gold) be the gold-standard tree that we are evalu-
ating against. Then define the precision p(t, g) and recall g(t, g) to be:

p(t, g) =
|t ∩ g|
|t|

(11.5)

r(t, g) =
|t ∩ g|
|g|

(11.6)
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and the F1 score to be their harmonic mean:

F1(t, g) =
1

1
2

(
1

p(t,g) +
1

r(t,g)

) (11.7)

=
2|t ∩ g|
|t|+ |g|

(11.8)

The typical setup for English parsing is to train the parser on the Penn Treebank, Wall Street
Journal sections 02–21, to do development on section 00 or 22, and to test on section 23. If we train
a PCFG without any modifications, we will get an F1 score of only 73%. State-of-the-art scores are
above 90%.

11.2 Markovization
A PCFG captures the dependency between a parent node and all of its children. On the Penn
Treebank, this leads to over 10,000 rules, each with its own probability. In practice, it turns out that
this tends to be both too little and too much.

11.2.1 Vertical markovization
A context-free grammar can be thought of as a branching bigram model: if you follow any path
of a parse tree, the CFG controls what nonterminals can come after what nonterminals, just like
a bigram model. And just as in language modeling, bigrams often aren’t as good as trigrams or
beyond.

As a concrete (but idealized) example, suppose our Treebank looked like this (Johnson, 1998;
Klein and Manning, 2003):
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90 times NP

PP

NP

NN

car

DT

the

IN

in

NP

NN

man

DT

the

10 times NP

PP

NP

NN

dog

DT

the

IN

with

PP

NP

NN

car

DT

the

IN

in

NP

NN

man

DT

the

From this we would learn
P (NP→ NP PP) = 90/310

P (NP→ NP PP PP) = 10/310

P (NP→ DT NN) = 210/310

and whenever the parser is asked to choose between these two trees:
(11.9) NP

PP

NP

NN

dog

DT

the

IN

with

PP

NP

NN

car

DT

the

IN

in

NP

NN

man

DT

the
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(11.10) NP

PP

NP

NN

dog

DT

the

IN

with

NP

PP

NP

NN

car

DT

the

IN

in

NP

NN

man

DT

the

it will prefer the second one (because (90/310)2 > 10/310), which was never observed in the train-
ing data!

This can be corrected by modifying the node labels to increase their sensitivity to their vertical
context, much in the same way that we can increase the context-sensitivity of an n-gram language
model by increasing n. We simply annotate each node with its parent’s label. For example:

(11.11) NP[mom = TOP]

PP[mom = NP]

NP[mom = PP]

NN[mom = NP]

car

DT[mom = NP]

the

IN[mom = PP]

in

NP[mom = NP]

NN[mom = NP]

man

DT[mom = NP]

the

(where we assume a “super-root” node called TOP; if this NP were part of a larger tree, we’d use
its parent label).

Now, the model learns:

P (NP[mom = TOP]→ NP PP) = 90/310

P (NP[mom = TOP]→ NP PP PP) = 10/310

P (NP[mom = NP]→ DT NN) = 100/310

P (NP[mom = PP]→ DT NN) = 110/310

(where all the RHS symbols are annotated with mom = NP but we’ve suppressed it for clarity).
Now, the parser will not be tempted to build a three-level NP (because it would require an

NP[mom = NP] with an NP[mom = NP] child, which has zero probability in our example, and
would be rare in practice).
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If we train the PCFG on trees annotated in this way, then after we parse the test data, we have
to remove the annotations before evaluation. In practice, this helps quite a bit, increasing accuracy
to about 77% F1.

11.3 Binarization and horizontal markovization
On the other hand, our PCFG also captures too much dependency. Suppose the Treebank contains
the tree fragment

(11.12) NP

PP

NP

NNP

America

IN

in

NN

building

NN

steel

JJS

tallest

DT

the

but never contains
(11.13) NP

PPNNJJSDT

Then the parser will fail trying to parse:

(11.14) NP

PP

NP

NNP

America

IN

in

NN

building

JJS

tallest

DT

the

The problem is that if we allow long rules, then there are many possible long rules, which our
model says are all independent. But we know that there is some relationship between them. The
solution is to break down the long rules into smaller rules. Recall that we did this previously to
reduce parsing complexity; now, since our grammar is derived from trees, it’s easier to binarize
the trees instead of binarizing the grammar. For example, to binarize (11.12), we introduce new
NP nodes. When we converted to Chomsky normal form, we took care to annotate nonterminals
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so as not to change the language/distribution generated. Let’s start by doing the same, annotating
each one with the children that have been generated so far:

(11.15) NP

NP[left = DT]

NP[left = DT,JJS]

NP[left = DT,JJS,NN]

NP[left = DT,JJS,NN,NN]

PP

NP

NNP

America

IN

in

NN

building

NN

steel

JJS

tallest

DT

the

Note that there is enough information in the annotations to reverse the binarization. So much
information, in fact, that we still can’t parse (11.14). We can again apply an idea from language
modeling, this time in the horizontal direction: make the generation of each child depend only
on the previous (n − 1) children (Miller et al., 1996; Collins, 1999; Klein and Manning, 2003). For
example, if n = 2:
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(11.16) NP

NP[left = DT]

NP[left = JJS]

NP[left = NN]

NP[left = NN]

PP

NP

NNP

America

IN

in

NN

building

NN

steel

JJS

tallest

DT

the

Now we can parse (11.14), and the parser accuracy should be a little bit better.

11.4 Using linguistic knowledge
Previously, we sawhow to increase the amount of vertical context dependency in a PCFGby chang-
ing it, effectively, from a bigrammodel to a trigrammodel, and how to decrease the amount of hor-
izontal context dependency by changing it, effectively, from a∞-gram model to a bigram model.
We can try to use linguistic knowledge to make these context dependencies more intelligent.

11.4.1 Lexicalization
In the vertical direction, a common technique is lexicalization (sometimes called head-lexicalization
to distinguish it from another concept with the same name). In English parsing, PP attachment is
one of the most difficult ambiguities to resolve, as illustrated by the well-known sentence:
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(11.17) S

VP

NP

PP

NP

NN

telescope

DT

a

IN

with

NP

NN

man

DT

a

VBD

saw

NP

PRP

I

(11.18) S

VP

PP

NP

NN

telescope

DT

a

IN

with

VP

NP

NN

man

DT

a

VBD

saw

NP

PRP

I

Although there is a strong general preference for low attachment (11.17), the words involved may
change this preference. For example, afterwould have a definite preference for attaching to VP.
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(11.19) S

VP

PP

NP

NNP

midnight

IN

after

VP

NP

NN

mogwai

DT

the

VBD

fed

NP

PRP

I

In Section 11.2.1, we annotated each nodewith the label of its parent; now, we go in the opposite
direction, annotating each node with the label of one of its leaves. Which one? We choose the
linguistically “most important” one, known as its head word, using some heuristics (e.g., the head
of a VP is the verb; the head of an NP is the final noun).

For example, tree (11.19) would become:
(11.20) S[head = fed]

VP[head = fed]

PP[head = after]

NP[head = midnight]

NN[head = midnight]

midnight

IN[head = after]

after

VP[head = fed]

NP[head = mogwai]

NN[head = mogwai]

mogwai

DT[head = the]

the

VBD[head = fed]

fed

NP[head = I]

PRP[head = I]

I

What did this buy us? We are going to learn a high probability for rules like
VP[head = w]→ VP[head = w] PP[head = after] (11.21)

and low probability for rules like
NP[head = w]→ NP[head = w] PP[head = after] (11.22)

so that we can learn that PPs headed by after prefer to attach to VPs instead of NPs.

Combining with binarization Previously, when we binarized trees, we binarized them left-to-
right. But in combinationwith head-lexicalization, it’s more convenient to binarize so that the head
is generated last (lowest). This means keeping track of the most recent child on both the left and
right side, like this:
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(11.23) NP

PP

NP

NNP

prairie

DT

the

IN

on

NN

house

JJ

little

(11.24) NP

NP[left = JJ]

PP

NP

NNP

prairie

DT

the

IN

on

NP[left = JJ, right = PP]

NN

house

JJ

little

This makes the tree look more like the trees used in linguistics, and it also works better with the
next trick, subcategorization.

11.4.2 Subcategorization
Not all of the sisters of a head node are created equal. Some seem to be obligatory, and others seem
to be optional. For example:
(11.25) Godzilla obliterated the city
(11.26) ? Godzilla obliterated
The verb obliterated normally takes a direct object, making the second sentence odd. On the other
hand, in the sentences
(11.27) Godzilla exists
(11.28) * Godzilla exists the monster
the verb exists never takes a direct object.

By contrast, other sister phrases can occur much more freely:
(11.29) Godzilla exists today
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(11.30) Godzilla obliterated the city today
We call the obligatory phrases arguments (or complements) and the others adjuncts. The argument-

adjunct distinction can affect parsing decisions. For example,
(11.31) I saw her duck
(11.32) I obliterated her duck
The first sentence is ambiguous for humans because saw can take either an NP or an S as an argu-
ment. The second sentence is unambiguous for humans, but ambiguous for computers unless they
learn that obliteratedmust take an NP argument, not an S argument.

Before, we made the generation of a child node depend on one previous child. Now, we would
like to use this same mechanism to control the number of arguments, depending on the verb. We
leave off the head annotations for clarity:

(11.33) S

VP

NP

NN

today

VP

NP

NN

city

DT

the

VBD

obliterated

NP

NNP

Godzilla

(11.34) S

VP

NP

NN

today

VP[left = ϵ, right = ϵ]

NP[arg]

NN

city

DT

the

VP[left = ϵ, right = NP]

VBD

obliterated

NP[arg]

NNP

Godzilla

We marked [NP the city] with an arg feature to indicate that it is an argument, not an adjunct.
Moreover, the left and right features only keep track of the previous arguments, not adjuncts.

How does the resulting grammar avoid generating a sentences these?
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(11.35) S

VP

NP

NN

today

VP[left = ϵ, right = ϵ]

VBD

obliterated

NP[arg]

NNP

Godzilla

(11.36) S

VP

NP[arg]

NN

village

DT

the

VP[left = ϵ, right = NP]

NP[arg]

NN

city

DT

the

VP[left = ϵ, right = NP NP]

VBD

obliterated

NP[arg]

NNP

Godzilla

In (11.35), we need a rule like this (remember that we left off the head annotations above; here, we
show them):

VP[head = obliterated, left = ϵ, right = ϵ]→ VBD[head = obliterated]

But this rule should have low probability, because it can only occur when obliterated has no argu-
ments on the right. Similarly, (11.36) needs a rule like this:

VP[head = obliterated, left = ϵ, right = NP]→ VP[head = obliterated, left = ϵ, right = NPNP]NP[head = city, arg]

which should again have low probability.
Another example to show how this works on the left side:
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(11.37) S

S

VP

NP

NN

city

DT

the

VBD

obliterated

NP

NNP

Godzilla

NP

NN

Today

(11.38) S

S[left = ϵ, right = ϵ]

VP

NP[arg]

NN

city

DT

the

VBD

obliterated

NP[arg]

NNP

Godzilla

NP

NN

Today

(The scheme shown above is different from the scheme used by Collins (1997); it should have a
similar effect.)

11.5 Practical Details
11.5.1 Smoothing
With the complex nonterminalswe have been creating, it may become hard to reliably estimate rule
probabilities from data. The solution is to apply smoothing, as in language modeling. However,
remember that when you smooth a conditional probability P (Y | X), smoothing only lets you
selectively forget parts of X , not Y . For example, if we are doing vertical Markovization, we can
smooth the probability

P (NP[mom = TOP]→ NP PP)
with the probability

P (NP→ NP PP).
Witten-Bell smoothing is a fairly common choice in parsing.
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Head-lexicalization, in particular, creates so many rules that smoothing is essential. Doing it
right requires breaking up the probability of a rule into several steps and smoothing each sepa-
rately; see the original paper by Collins (1997) for details.

11.5.2 Unknown words
If we test our parser on unseen data, it is inevitable that it will encounter unseenwords. If we don’t
do anything about it, the parser will simply reject any string that has an unknown word, which is
obviously bad.

The simplest thing to do is to simulate unknown words in the training data. That is, in the
training data, replace every word that occurs only once (or≤ k times) with a special symbol <unk>.
Then train the PCFG as usual. Then, in the test data, replace all unknown words with <unk>. It’s
also fine to usemultiple unknown symbols. For example, we can replacewords ending in -ingwith
<unk-ing>.

A more sophisticated approach would be to apply some of the ideas that we saw in language
modeling.

11.5.3 Beam search
The Viterbi CKY algorithm can be slow, especially if modifications to the grammar increase the
nonterminal alphabet a lot. We can use beam search to speed up the search if we are willing to allow
potential search errors.

After the completion of each chart cell best[i, j], do the following:
1: for all X ∈ N do
2: score[X]← best[i, j][X]× h(X)
3: end for
4: choose minscore
5: for all X ∈ N do
6: if score[X] < minscore then
7: end if
8: delete best[i, j][X]
9: delete back[i, j][X]
10: end for

The function h(X) is called a heuristic function and is meant to estimate the relative probability
of getting from S at the root down to X . The typical thing to do is to let h(X) be the frequency of
X in the training data.

There are two common ways of choosing minscore (line 4):

• minscore =
(
max
X

score[X]

)
× β, where 0 < β < 1 (typical values: 10−3 to 10−5)

• minscore is the score of the b’th best member of score (typical values of b: 10–100)
It is also fine to set minscore to the larger of these two values.
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Question The time complexity of CKY is normally O(n3|N |3), because we have to loop over
i, j, k,X, Y , and Z. If we add beam search, what will the time complexity be in terms of n and b?
Assume b < |N |.

11.6 Partially Unsupervised Training
The linguistically-motivated tree transformations we discussed previously are very effective, but
when we move to a new language, we may have to come up with new ones. It would be nice if
we could automatically discover these transformations. Suppose that we have a grammar defined
over nonterminals of the form X[q], where X is a nonterminal from the training data (e.g., NP)
and q is a number between 1 and k (for simplicity, let’s say k = 2). We only observe trees over
nonterminals X , but need to learn weights for our grammar. This is possible, and quite effective
(Matsuzaki, Miyao, and Tsujii, 2005; Petrov et al., 2006).

Suppose our first training example is the following tree, T :

S

VP

NP

NN

dog

DT

the

VBD

saw

NP

NN

cat

DT

the

And suppose that our initial grammar is:

DT[1] 1−→ the
DT[2] 1−→ the
NN[1] 0.2−−→ cat
NN[1] 0.8−−→ dog
NN[2] 0.7−−→ cat
NN[2] 0.3−−→ dog
VBD[1] 1−→ saw
VBD[2] 1−→ saw

S[1] 0.2−−→ NP[1] VP[1]
S[1] 0.4−−→ NP[1] VP[2]
S[1] 0.1−−→ NP[2] VP[1]
S[1] 0.3−−→ NP[2] VP[2]
S[2] 0.5−−→ NP[1] VP[1]
S[2] 0.1−−→ NP[1] VP[2]
S[2] 0.2−−→ NP[2] VP[1]
S[2] 0.2−−→ NP[2] VP[2]

NP[1] 0.2−−→ DT[1] NN[1]
NP[1] 0.4−−→ DT[1] NN[2]
NP[1] 0.1−−→ DT[2] NN[1]
NP[1] 0.3−−→ DT[2] NN[2]
NP[2] 0.5−−→ DT[1] NN[1]
NP[2] 0.1−−→ DT[1] NN[2]
NP[2] 0.2−−→ DT[2] NN[1]
NP[2] 0.2−−→ DT[2] NN[2]

VP[1] 0.2−−→ VBD[1] NP[1]
VP[1] 0.4−−→ VBD[1] NP[2]
VP[1] 0.1−−→ VBD[2] NP[1]
VP[1] 0.3−−→ VBD[2] NP[2]
VP[2] 0.5−−→ VBD[1] NP[1]
VP[2] 0.1−−→ VBD[1] NP[2]
VP[2] 0.2−−→ VBD[2] NP[1]
VP[2] 0.2−−→ VBD[2] NP[2]

Notice the bracketed numbers thatwe have added to the nonterminals. This grammar hasmany
possible derivations, all of which generate the same tree modulo the bracketed numbers. We’ve
initialized the rule probabilities randomly, and our goal is to optimize the rule probabilities to
maximize the (log-)likelihood of the trees in the trainingdata. The hope is thatwe can automatically
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learn ways of augmenting the nonterminals that perform as well or better than the linguistically-
motivated augmentations we saw earlier.

If we want to do hard EM, we need to do:
• E step: find the highest-weight derivation of the grammar that matches the observed tree

(modulo the annotations [q]).
• M step: re-estimate the weights of the grammar by counting the rules used in the derivations

found in the E step, and normalize.
The M step is easy. The E step is essentially Viterbi CKY, only easier because we’re given a tree
instead of just a string. The chart for this algorithm looks like the following, where each cell works
exactly like the cells in CKY. Can you fill in the rest?

CSE 40657/60657: Natural Language Processing Version of October 14, 2019



Chapter 11. Statistical Parsing 89

dogthe

saw

NP[1] 0.28
NP[2] 0.14

NN[1] 0.2
NN[2] 0.7

cat

DT[1] 1
DT[2] 1

the

Using real (not hard) EM as well as some additional tricks (Petrov et al., 2006), this method can
be made to learn a different number of q’s for each nonterminals, and the result is a very good
parser. Other parsers have surpassed it in parsing accuracy, but this method remains the best way
to train a PCFG.
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