
Chapter 14

Bags of Words

Possibly the simplest way to represent the “meaning” of a text is to assume that each word in the
text contributes a little bit of meaning, which we can represent as the one-hot vector, and that we
can combine the “meanings” of words simply by adding up their vectors.

the cat sat on the mat→ {cat : 1,mat : 1, on : 1, sat : 1, the : 2}

In information retrieval, this is called a term vector, but in NLP it’s more commonly known as a bag
of words. This representation completely ignores any semantic relationships between words (like
synonmy) and any kind of structure of the text (like word order or syntax). Yet, in many situations,
it can be very effective.

Tokenization We assume that all the sentences/documents have been tokenized so that theword
boundaries are unambiguous. A commonly used English tokenizer is part of Stanford CoreNLP,1
andLDChas a simple rule-based tokenizer.2 Both are implemented/wrapped in Python byNLTK.3

Stemming It is also common in bag-of-word approaches to do morphological stemming, that is,
removing affixes like -ed, -ing, etc. A classic stemmer for English is the Porter stemmer,4 and another
is the Lancaster (Paice/Husk) stemmer.5 Both are implemented/wrapped in Python by NLTK.6

Stop Words Finally, it’s also common to remove high-frequency but low-content words, like
(Manning, Raghavan, and Schütze, 2008, p. 26):

a an and are as at be by for from has he in
is it its of on that the to was were will with

1http://nlp.stanford.edu/software/corenlp.shtml
2http://www.cis.upenn.edu/~treebank/tokenizer.sed
3http://www.nltk.org/api/nltk.tokenize.html
4http://tartarus.org/martin/PorterStemmer/
5http://www.comp.lancs.ac.uk/computing/research/stemming/index.htm
6http://www.nltk.org/api/nltk.stem.html
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14.1 Classification
Suppose we have a collection of documents in different classes, and we want to learn to classify
new documents. For example:

• We have a collection of e-mails that are labeled either as “spam” or “ham” and we want to
learn to classify new e-mails.

• We have some texts whose author is known (e.g., Alexander Hamilton, James Madison, and
John Jay) and want to classify anonymous texts (the Federalist Papers).

• We have a database of product reviews together with star ratings, and we want to be able to
predict star ratings based on reviews alone.

• We have samples of (transcribed) speech from children diagnosed as autistic or not autistic,
and we want to automatically diagnose other children using their speech.

• We have tweets that are known to be in various languages andwant to automatically identify
the language of new tweets.

Question 12. What are some other possible applications?
We’ll continue working with the example of spam filtering, but just remember that this is only one
of many possible applications. This is a fairly easy problem, but occasionally difficult even for
humans. For example:
From: fas@nsf.gov
Subject: Payment
To: chiang@isi.edu

DFM has approved your requested payment and has asked the U.S. Treasury to
issue a payment to you within the next 4 working days. This payment is
being sent directly to the Bank or Financial Institution identified by
you for this purpose. If you are an NSF employee, this payment is being
sent directly to the bank/financial institution where your bi-weekly pay
is being deposited.

This payment for 560.00 is 1099 reportable if it totals $600 or more
for the year (i.e. You will receive an IRS 1099-Misc form from
NSF)P131318.

Head, Accounts Payable Section.
-------------------------------

More formally, we are given documents d1, . . . , dn together with their correct classes k1, . . . , kn.
We want to learn a model P (k | d), where k is a class and d is a document, and given a new
document d, we want to be able to find, with high accuracy,

k∗ = arg max
k

P (k | d). (14.1)
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14.1.1 Naïve Bayes
Question 13. What problem would you run into if you used the model

P (k | d) = c(k, d)

c(d)
?

What might you do to repair the model?
This route turns out to be difficult. Instead of thinking about how to classify a document, let’s

think about how the document came to be. First, someone decided towrite an e-mail; he was either
a spammer or a “hammer.” Then, this person authored a document. More formally:

arg max
k

P (k | d) = arg max
k

P (d)P (k | d) (14.2)

= arg max
k

P (k, d) (14.3)

= arg max
k

P (k)P (d | k). (14.4)

The advantage of thinking about it this way is that it is much easier to write down a model for
P (d | k) than for P (k | d).

We’ll consider just the simplest, which is called a naïve Bayes classifier and looks like this:

P (k, d) = p(k)
∏
w∈d

p(w | k), (14.5)

where the p(k) and p(w | k) are the parameters of the model. (Let’s adopt the convention that
P (something) and p(something) bothdenote the probability of something, butP (something)might
be defined in terms of other probabilities, whereas p(something) is a parameter of the model that
needs to be estimated.)

Naïve Bayes is called naïve because it naïvely assumes that all the words in a document are
independent of each other. All it captures is that spammers are more likely to use certain words
and hammers are more likely to use certain words.

It is possible to count other things besides words. For example, if we’re trying to classify a
document as English or French, then the presence of an é is a pretty good sign that it’s in French.
So character probabilities like p(é | k) might be useful in addition to word probabilities. Or, if
we’re trying to predict the positivity or negativity of a product review, then the occurrence of the
word badmight be good sign of a negative review, unless it is immediately preceded by the word
not. So probabilities of bigrams like p(not bad | k) are important. Note that if we do this, however,
the distribution P (k, d) no longer sums to one, because there’s no such thing as a document that
contains the words {dog} but the characters {c, a, t}. So, if we only sum over feasible documents d,
then P (k, d) sums to less than one, that is, it is deficient, which is in general not considered a good
thing. This is even more naïve, but might work okay in practice.
Question 14. What are some other features that might be helpful?
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14.1.2 Training
Training the model, or estimating the parameters p(k) and p(w | k), is easy. It’s just:

p(k) =
c(k)∑
k c(k)

p(w | k) = c(k,w)∑
w′ c(k,w′)

.

(14.6)

This is known as relative frequency estimation (or “count and divide”). It’s so intuitive that it may
seem odd to give it a name, but it’s worth dwelling a bit on whywe estimate probabilities this way.

Consider just p(k). Suppose we have just two theories, or models, about how prevalent spam
is. Model 1, or m1, says that 10% of e-mails are spam, whereas Model 2, or m2, says that 90% of
e-mails are spam.

p(spam | m1) =
1
10 p(spam | m2) =

9
10

p(ham | m1) =
9
10 p(ham | m2) =

1
10

Before looking at the data, suppose that we think these two models are equally valid.

p(m1) =
1
2 p(m2) =

1
2

Then, suppose we look at some data and see that, out of 10 e-mails, 7 are spam and 3 are ham. Now
we want to know which model is better,m1 orm2?

P (m1 | data) =
p(m1)P (data | m1)

P (data) P (m2 | data) =
p(m2)P (data | m2)

P (data)

=
1
2

(
1
10

)7 ( 9
10

)3
P (data) =

1
2

(
9
10

)7 ( 1
10

)3
P (data)

=
93

2 · 1010 · P (data) =
97

2 · 1010 · P (data)

Since P (m2 | data) is bigger, we can conclude thatm2 is the better model.
Now suppose that we compare not two models, but an infinite number of models,

P (spam | θ) = θ

P (ham | θ) = 1− θ

for all θ ∈ [0, 1]. The same reasoning still holds: we want to find the model that maximizes

P (θ | data)︸ ︷︷ ︸
posterior

=

prior︷︸︸︷
P (θ)

likelihood︷ ︸︸ ︷
P (data | θ)
P (data)︸ ︷︷ ︸
evidence

. (14.7)

Note that the denominator is independent of θ, and ifwe assume that the priorP (θ) is uniform, then
the only factor that matters is the likelihood. We therefore call this maximum likelihood estimation.
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Going back to the full naïve Bayes model: we want to maximize the likelihood, which is

L =
∏
i

P (ki, di) (14.8)

=
∏
i

p(ki)
∏
w∈di

p(w | ki). (14.9)

And this maximization problem has a closed-form solution, namely (14.6). See Section ?? for more
details on how to derive that.

14.1.3 Classification
Once we’ve trained the model, finding the most probable class of a new document is also easy:

k∗ = arg max
k

P (k | d) (14.10)

= arg max
k

P (k, d) (14.11)

= arg max
k

p(k)
∏
w∈d

p(w | k). (14.12)

14.1.4 Smoothing
What happens if we encounter a wordwe’ve never seen before? Thenwewould have p(w | k) = 0,
and therefore P (k, d) = 0, for all k. The presence of a single unknown word zeros out the whole
document probability and makes it impossible to choose a class.

The standard solution is smoothing. We’ll talk about the simplest smoothing method now, and
more advanced smoothingmethods later (whenwe talk about languagemodels). In add-one smooth-
ing, invented by Laplace in the 18th century, we add one to the count of every event, including
unseen events. Thus we would estimate p(w | k) as:

p(w | k) = c(k,w) + 1∑
w′ c(k,w) + |V |

(14.13)

where |V | is the size of the vocabulary, including unseen words. But what if we don’t know how
many unseen words there are? A typical (though not entirely correct) thing to do is to set |V | to
the number of seen word types, plus one for a generic unseen word.

We can also add any value δ > 0 to the counts instead of one:

p(w | k) = c(k,w) + δ∑
w′ c(k,w′) + |V |δ

. (14.14)

The increment that we add (whether 1 or δ) is known as a pseudocount. Typically, δ would be set by
trial and error. If you have a good reason to, you can also add a different pseudocount to different
word types.

These methods are not hacks; they can all be thought of as different choices of the prior proba-
bility that we saw in Equation (14.7).
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Question 15. If our training data is:
ham spam spam

please pass on to
your groups

we deliver to
your door within
24 hours

please update
your account
details with
citibank

and we train with add-one smoothing, what are P (spam | d) and P (ham | d) for the document
below?

please forward to
your groups

14.1.5 Experiment
A classic dataset for text classification is Pang and Lee’s dataset of movie reviews.7

Here are some example sentences from positive reviews:
the rock is destined to be the 21st century's new " conan " and that
he's going to make a splash even greater than arnold schwarzenegger ,
jean-claud van damme or steven segal .

the gorgeously elaborate continuation of " the lord of the rings "
trilogy is so huge that a column of words cannot adequately describe
co-writer/director peter jackson's expanded vision of j . r . r
. tolkien's middle-earth .

effective but too-tepid biopic

And some example sentences from negative reviews:
simplistic , silly and tedious .

it's so laddish and juvenile , only teenage boys could possibly find
it funny .

exploitative and largely devoid of the depth or sophistication that
would make watching such a graphic treatment of the crimes bearable .

When we run the naive Bayes classifier on this data, we get an accuracy of 75.7%. Some of the
7http://www.cs.cornell.edu/people/pabo/movie-review-data/
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model probabilities are:
p(+) = 0.5

p(−) = 0.5

p(moving | +) = 0.000582

p(portrait | +) = 0.000463

p(touching | +) = 0.000404

p(powerful | +) = 0.000394

p(engrossing | +) = 0.000296

p(cinema | +) = 0.000611

p(beautiful | +) = 0.000404

p(culture | +) = 0.000374

p(enjoyable | +) = 0.000453

p(wonderful | +) = 0.000286

p(bad | −) = 0.001862

p(dull | −) = 0.000657

p(boring | −) = 0.000488

p(too | −) = 0.003285

p(flat | −) = 0.000328

p(tv | −) = 0.000388

p(worst | −) = 0.000458

p(unfunny | −) = 0.000258

p(jokes | −) = 0.000378

p(? | −) = 0.001473

(The words shown above are not the most frequent words; those are rather boring. Instead, we
selected the words with the highest p(w | k)/(p(w) + 10).)

14.2 Clustering
Let’s go back to the naïve Bayes model and consider the case where some or all of the classes ki
are unobserved. For example, if we have 1,000 e-mails labeled as spam or ham, and 1 million
more unlabeled e-mails, maybe we can learn a better classifier by combining both labeled and
unlabeled data. Maybe from the labeled data we learn that “award” often implies spam, and from
the unlabeled data we learn that “award” often occurs in the same documents as “deposit,” then
we can infer that “deposit,” too, is associated with spam.

If all of the ki are unobserved, then there’s no way that the computer can learn to label emails
as spam or ham. The best that we can do is tell the computer that there are two kinds of emails,
and it should try to find some way of classifying them into class 1 and class 2. Then, just maybe,
class 1 will be ham and class 2 will be spam, or class 1 will be spam and class 2 will be ham.
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Then again, maybe the computer will find some other possibly meaningful way of classifying the
emails instead. We can also choose more than two classes and see what happens. This is known as
text clustering. Some of the most interesting NLP problems are unsupervised learning problems,
although unsupervised learning also often fails.

14.2.1 Expectation-Maximization: “hard” version
Assume that all of the ki are unobserved. We have to choose a number of classes in advance. Then
we want to maximize the likelihood, that is, the probability of the observed data. Since we only
observe words without classes, the likelihood looks different from before:

L =
∏
i

P (di) (14.15)

=
∏
i

∑
k

p(k)
∏
w∈di

p(w | k). (14.16)

The bad news is this does not have a closed-form solution, and we have to use an iterative method.
Whilewe could use a genericmethod like gradient ascent, it’s farmore common to use a specialized
method called expectation-maximization (Dempster, Laird, and Rubin, 1977).

We start with the “hard” (as opposed to “soft”) version. The basic idea is pretty intuitive. If we
have labels, then we know how train the model (this is just like training in the supervised case).
And if we have amodel, we knowhow to predict the labels (this is just like testing in the supervised
case). So, we can start by initializing the model parameters to random values; then guess labels for
all the documents, then use those labels to retrain the model, and repeat.
initialize parameters p(k) and p(w | k) randomly
repeat

for each i do
predict k∗i = arg maxk P (k | di)

end for
estimate the parameters from the di and k∗i

until done
It seems that one of three things could happen: nothing, or the model will get worse and worse as
noise takes over, or somehow the model will get better.

If you consider the partially supervised case (where some of the documents are labeled and
some are not labeled), it’s easier to see how it might actually get better. Suppose, as in the example
from the beginning, that we’ve seen emails labeled as spam that contain the word “award” but
never theword “deposit.” Butwe’ve seen unlabeled emails containing bothwords; whenwe guess
the label for those emails, they’re likely to be labeled as spam. If they are, then when we retrain
the model, we’ll learn that “deposit” is mildly associated with spam, which is good.

In the fully unsupervised case, it’s a little harder to see, but let’s work out a simple example.
award notification
enron canada
enron america
award payment
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Initialize the model randomly:

p(1) = 0.5 p(2) = 0.5

p(america | 1) = 0.1 p(america | 2) = 0.2

p(award | 1) = 0.1 p(award | 2) = 0.1

p(canada | 1) = 0.1 p(canada | 2) = 0.2

p(enron | 1) = 0.2 p(enron | 2) = 0.2

p(notification | 1) = 0.4 p(notification | 2) = 0.2

p(payment | 1) = 0.1 p(payment | 2) = 0.1

Guess a class for each example:
P (1, d) P (2, d) k∗

award notification 0.02 0.01 1
enron canada 0.01 0.02 2
enron america 0.01 0.02 2
award payment 0.005 0.005 1 (arbitrary)

For the last document, there was a tie, which we broke arbitrarily. Retrain the model:

p(1) = 0.5 p(2) = 0.5

p(america | 1) = 0 p(america | 2) = 0.25

p(award | 1) = 0.5 p(award | 2) = 0

p(canada | 1) = 0 p(canada | 2) = 0.25

p(enron | 1) = 0 p(enron | 2) = 0.5

p(notification | 1) = 0.25 p(notification | 2) = 0

p(payment | 1) = 0.25 p(payment | 2) = 0

Guess a class for each example:
P (1, d) P (2, d) k∗

award notification 0.0625 0 1
enron canada 0 0.0625 2
enron america 0 0.0625 2
award payment 0.0625 0 1

And it’s not hard to see that nothing changes after this. The algorithm clustered the documents by
noticing that two documents had the word “award” in common and two documents had the word
“enron” in common.
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But what if we had broken that tie in the other direction? Retrain the model:

p(1) = 0.25 p(2) = 0.75

p(america | 1) = 0 p(america | 2) = 0.167

p(award | 1) = 0.5 p(award | 2) = 0.167

p(canada | 1) = 0 p(canada | 2) = 0.167

p(enron | 1) = 0 p(enron | 2) = 0.333

p(notification | 1) = 0.5 p(notification | 2) = 0

p(payment | 1) = 0 p(payment | 2) = 0.167

Guess a class for each example:
P (d, 1) P (d, 2) k∗

award notification 0.0625 0 1
enron canada 0 0.0417 2
enron america 0 0.0417 2
award payment 0 0.0208 2

So hard EM is able to discover some things, but is also kind of brittle.

14.2.2 Expectation-Maximization: real version
The real version of EM has a slight difference that makes it possible to actually prove that the
likelihood (14.15) gets better, or is at a local maximum.

Before, we used the model to predict the best label for each document, by using the model’s
best guess for each. But its guesses aren’t certain. For a document d, it only gives probabilities
P (1 | d) and P (2 | d). So, it’s more reasonable to say that we observed d a fraction of a time in class
1, and a fraction of a time in class 2.

We do this for all the documents and add up all the counts to get expected counts, which may be
fractional. Then, just like before, we train the model from those counts. It doesn’t matter that the
counts are fractional; we just count and divide like before.

Let’s try this with our example, with the same random initialization as before. Instead of guess-
ing the best class for each document, we compute the distribution over classes:

P (1, d) P (2, d) P (1 | d) P (2 | d)
award notification 0.02 0.01 0.667 0.333
enron canada 0.01 0.02 0.333 0.667
enron america 0.01 0.02 0.333 0.667
award payment 0.005 0.005 0.5 0.5
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Note that we didn’t have to do any arbitrary tie-breaking. Retrain the model:
p(1) = 0.458 p(2) = 0.542

p(america | 1) = 0.0909 p(america | 2) = 0.154

p(award | 1) = 0.318 p(award | 2) = 0.192

p(canada | 1) = 0.0909 p(canada | 2) = 0.154

p(enron | 1) = 0.182 p(enron | 2) = 0.308

p(notification | 1) = 0.182 p(notification | 2) = 0.0768

p(payment | 1) = 0.136 p(payment | 2) = 0.115

And so on. The computations are tedious to do by hand, but hopefully you can see where this is
going—eventually the words “award”, “notification”, and “payment” will dominate class 1, and
the words “enron”, “america”, and “canada” will dominate class 2.

The algorithm looks like this:
initialize parameters p(k) and p(w | k) randomly
repeat

▷ E step:
for each i, k do

compute P (k | di) =
P (k, di)∑
k′ P (k, di)

E[c(k)]← E[c(k)] + P (k | di)
for each w ∈ di do

E[c(k,w)]← E[c(k,w)] + P (k | di) · c(w ∈ di)
end for

end for
▷M step:
p(k) =

E[c(k)]∑
k′ E[c(k′)]

p(w | k) = E[c(k,w)]∑
w′ E[c(k,w′)]

until done
This version is guaranteed to make L increase or, if at a local maximum, stay the same.

In the initialization step, it’s very important to set the parameters randomly.
Question 16. What happens if we initialize the parameters uniformly?
Question 17. What happens if the number of classes is greater than or equal to the number of
documents?

14.2.3 Details
Number of iterations Theoretically we should keep performing iterations of EM until the likeli-
hood stops increasing. In practice, it’s extremely common just to set a fixed number of iterations.

Random restarts Because (real) EM is only guaranteed to converge to a local maximum, if we
run it again we might get a different result. So to try to get the best result, we might run EMmany
times and choose the one with the best likelihood.
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Smoothing In the supervised case, we used add-one or add-δ smoothing. We can use it here too,
during the M step. However, the likelihood is no longer guaranteed to increase at every iteration;
it could decrease. There’s another objective function that is guaranteed to increase, but it’s not so
common to explicitly compute it.

14.2.4 Experiment
We ran the unsupervised naïve Bayes clustering algorithm on the movie review data from before,
using two classes and 20 iterations.

Whatever the algorithm learns, it isn’t positive/negative:
k + − total
0 2330 2546 4876
1 2468 2252 4720

class words
0 i know my how want you're you will don't ?
1 nearly * suffers master fine quiet satire solid appealing murder

If we increase the number of classes to ten, we get:
k words
0 strength faith magnificent actresses writer/director rhythm stone subtle tout bride
1 sisterhood tour ya-ya grand heartfelt force la secrets baffling flamboyant
2 reign sequence fire century mad artificial saga oddly woody pulls
3 know someone joke sign theaters see check company unless ?
4 chicago superficial feelings loose blade blood amount michael commentary speaking
5 * / nowhere martin hill card tough weight winner cheesy
6 [a] extremely painfully effective well-a ted e clunker exquisitely honesty stilted
7 wilder significant van amy's main hold shadow ingredients mann driven
8 niro murphy showtime de husband en secret es discovery shocks
9 fat bag my greek liked ecks ! alabama sever cell

So, fully unsupervised learning isn’t magic; sometimes its results can be difficult to interpret,
or sometimes its results can be garbage.

But note that class 8 contains a number of foreign words (de, en, es). This is pretty common,
and suggests that naive Bayes clustering might be good at automatically categorizing documents
according to language. If we run the clusterer on text in 10 European languages (500 sentences per
language) from the WiLI-2018 dataset,8 we get the following results (showing the most frequent
words in each class):

8https://doi.org/10.5281/zenodo.841984
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k words
0 de a e o do em da que no um
1 de la en y el a que le et un
2 the in and of a to ja on was de
3 de a in the la der e en et des
4 der und die in von den des im de wurde
5 de i en og the der af at in er
6 the of a and in to di i for at
7 the de in of a and la en i di
8 de la di e del a il en con in
9 i ä den med och og en som de av

It’s not perfect, but many of the classes are pretty clear: 0 = Portuguese, 1 = Spanish, 2 = English, 4
= German, 5 = Danish, 8 = Italian, 9 = Swedish.

14.3 Topic Modeling
Countingwords can be a pretty goodway of quantifyingwhat a document is about, but not perfect.
Suppose that we are trying to categorize documents into different genres. If a document contains
theword “laser” or “robot” or other similarwords, that is a pretty good sign that it’s an engineering
article or a science-fiction story. Suppose further that many of these technology-related words just
occur one time – say, “photon” occurs only in an engineering article and “ramjet” appears only in a
science-fiction story. That wouldn’t be very good evidence that documents mentioning “photon”
are engineering and documents mentioning “ramjet” are science-fiction. It would be more reason-
able for a model to learn that these are all technology-related words, and that technology-related
words are indicative of both engineering and science fiction. That is, all these words belong to the
topic of technology, and both engineering and science fiction use words in the technology topic.
Howmight we learn such topics automatically? It turns out that these topics aren’t all that helpful
for classification; nevertheless, topics are interesting in their own right.

14.3.1 Naïve Bayes with topics
Let’s modify the NBC as follows:

P (d) = p(k)
∏
w∈d

∑
t

p(t | k)p(w | t). (14.17)

What’s new is the introduction of the variable t (topic), which is drawn from a finite set of prede-
termined size. We are given training data consisting of documents di and classes ki, but we are not
given the topics of the words in the di. The topics are called hidden variables.

Training
The class distribution p(k) is estimated by counting and dividing:

p(k) =
c(k)∑
k c(k)

. (14.18)
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The rest of the model is trained using EM. In the E step, we compute, for each document di and
word w ∈ di,

P (t | ki, w) =
p(t | ki)p(w | t)∑
t′ p(t

′ | ki)p(w | t′)
. (14.19)

Then, for each topic t,
E[c(ki, t)]← E[c(ki, t)] + P (t | ki, w) (14.20)
E[c(t, w)]← E[c(t, w)] + P (t | ki, w). (14.21)

The M step is just count and divide as usual:

p(t | k) = E[c(k, t)]∑
t′ E[c(k, t′)]

(14.22)

p(w | t) = E[c(t, w)]∑
t′ E[c(t′, w)]

. (14.23)

Experiment
We ran this model on themovie dataset, using 2 topics, 25 iterations, and add-10−6 smoothing, and
got an accuracy of 77.4%, which is a small improvement over the original model (75.7%).

Somewhat more interesting are the topics learned by the model.

topic words
0 stupid boring dull flat routine bad mess unfunny fails neither
1 funny both drama us look performances romantic entertaining world those
2 too lack bad silly title worst already ? mess tedious
3 compelling ride fascinating both entertaining works surprisingly heart family experience
4 made up through ' all never out comes audience than
5 worst too tries bad gross-out things ? title premise tv
6 engrossing beautiful refreshingly terrific portrait quiet riveting thoughtful moving enjoyable
7 poorly dull loud bad flat boring jokes generic numbers badly
8 long just isn't where when be doesn't plot movie or
9 de drama film love with your and their you life
10 who often story their picture cast and funny movies you
11 that's up quite as lot for little which it's out
12 remarkable quiet our relationships study moving fascinating culture performances powerful
13 compelling smart performances personal family portrait world intelligent different our
14 far can one but that in little , itself feel
15 unfunny flat boring bad mediocre dull plodding tv product badly
16 many not never it into has time ( from but
17 vividly lively provides touching warm wonderful disturbing powerful engrossing riveting
18 film gives picture makes without you with at first and
19 too bad title jokes fails feels problem nothing silly tv

Many of the topics are clearly dominated by positive or negative words. There are also seem to be
some topics with neutral words (4, 8, 9, 10, 11, 14, 16, 18). It’s hard to guess what might further
differentiate the topics (if anything).
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14.3.2 Probabilistic LSA
We can think of a document represented as a bag of words as a vector, where each component of
the vector is a different word type. In many applications, this vector representation is useful in its
own right. For example, we can compute the similarity between two documents using the cosine
of the angle between the two document vectors.

As argued above, however, words might be too fine-grained a way of quantifying what a doc-
ument is about. So what if we use vectors where each component of the vector is a different topic?
This is the idea behind probabilistic latent semantic analysis (PLSA) or probabilistic latent semantic in-
dexing (PLSI) (Hofmann, 1999). The only difference between PLSA and the NBCwith topics is that
in PLSA, every document is in its own class. Instead of training the model to predict a label (e.g.,
positive or negative), we’re training the model to look at a test document and guess which indi-
vidual training document it’s most similar to. This task is not very useful, but what we get from
it is the probabilities p(t | ki), which can be thought of as a vector representation of document di,
and the probabilities p(t | w), which can be thought of as a vector representation of word w.

Training PLSA is identical to above. But after training a PLSA model, there isn’t any inference
step (because we don’t care about the document-similarity task). The end product of PLSA train-
ing is the parameters themselves. We ran PLSA using the same settings as before, but for more
iterations. This time, the topics we got were:

topic words
0 made last since fans once passion again perfect cinema animated
1 ? don't man video stuff satisfying problem what's how why
2 far journey summer getting job surprises surprise water setting crush
3 works worth genre idea seeing cliches already appeal add female
4 documentary heart mind fascinating do difficult satire strong light filmmakers
5 her romantic truly formula girl start delightful major puts play
6 there's those lot women enjoy need beautiful close something real
7 your you'll flat deep throughout murder forgettable coming-of-age seriously [a]
8 " other ! comes year silly ending horror less five
9 if fun because watch mr you're beyond hilarious sad witty
10 too quite moving place amusing visually human somewhat important appealing
11 performance keep sometimes romance melodrama compelling wrong wonderful strange straight
12 entertaining family comic mostly surprisingly touching ride leaves brilliant quiet
13 de short hard psychological que falls y la ideas o
14 bad study sort rarely gives entire modern fire ugly awful
15 piece part fine beautifully humor pleasure storytelling did usual solid
16 doesn't care lacks power else yet work they rich impossible
17 moments my thing dramatic neither nor mess there funny career
18 i like feels me pretty still looks left long worst
19 direction seem everyone opera help tedious soap nature alone predictable

Note how different these topics look from before. None are strongly positive or negative, because
the model is no longer receiving information about positivity or negativity. But there doesn’t seem
to be that much coherence in general in these topics.
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14.3.3 Optional: Latent Dirichlet Allocation
No one uses PLSA anymore. Latent Dirichlet Allocation (Blei, Ng, and Jordan, 2003) is a further
development of PLSA that is by far the most widely known and used topic model. LDA is quite
math-heavy and we don’t give a full description here, but just a little bit of the basic idea.

In Section 14.1.2, we introduced the notion of a prior distribution:

P (θ | data)︸ ︷︷ ︸
posterior

=

prior︷︸︸︷
P (θ)

likelihood︷ ︸︸ ︷
P (data | θ)
P (data)︸ ︷︷ ︸
evidence

, (14.24)

and we just assumed that the prior was uniform. But we can choose other distributions too. The
easiest choice of prior, other than uniform, is the (symmetric) Dirichlet distribution:

Dir(θ;α) ∝
∏
i

θα−1
i . (14.25)

The parameter α is called the concentration.
Now we have a number of options. First, we can try to find the best model (θ) just like before.

Since we are now taking the prior into account, we’re not doing maximum likelihood estimation
anymore; we’re doing maximum a posteriori (MAP) estimation. It’s not too hard to see that the re-
sulting estimate is exactly what the MLE estimate would have been if there were pseudocounts of
(α−1) for each outcome. In other words, MAP estimationwith a Dirichlet prior with concentration
α is equivalent to MLE estimation with add-(α− 1) smoothing.

But another way of thinking about it is, if we’re only interested in the topics, and not θ, then we
shouldn’t try to estimate θ. Instead, we should integrate over all possible values of θ:

P (topics | data) = P (topics,data)
P (data) (14.26)

=

∫
P (topics,data, θ)dθ∫

P (data, θ)dθ (14.27)

That looks bad, and in all but the simplest cases, it is bad, but that doesn’t stop people from trying
to do it anyway.

Asuncion et al. (2009) provide a good overview and comparison of both PLSA and LDA. The
LDA model looks like this:

P (data | α, β) =
∏
t

P (ϕt | β)
∏
i

P (θi | α)︸ ︷︷ ︸
prior

∏
w∈di

∑
t

p(t | i, θ)p(w | t, ϕ)︸ ︷︷ ︸
likelihood

. (14.28)

The part labeled “likelihood” is more or less the same as PLSA. The part labeled “prior” has two
parts; P (ϕt | β) is a Dirichlet prior on the word distributions p(w | t), and P (θi | α) is a Dirichlet
prior on the topic distributions p(t | i).

From here, we can use one of several different approximationmethods to proceed. One of these
(Variational Bayes or mean-field approximation) is operationally quite similar to EM. For further
information, see the references listed below.
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