
Chapter 15

Named Entity Recognition

Named entity recognition (NER) is the task of identifying what substrings of a text are names of
people, places, organizations, etc. It’s an extremely common early step in a lot of text analysis
applications.

Usually NER is treated as a sequence labeling problem. Given a text like

Mr. Vinken is chairman of Elsevier N. V. , the Dutch publishing group .

we want to label the words as
Mr.
B-person

Vinken
I-person

is
O
chairman
O

of
O

Elsevier
B-org

N.
I-org

V.
I-org

,
O
the
O

Dutch
O

publishing
O

group
O

.
O

where B stands for “begin,” I stands for “inside,” and O stands for “outside.” Many tasks can be
reduced to sequence labeling in a similar way.

15.1 Conditional Random Fields
Nowwe can use any sequence labeling model we want to; the one we’ve learned so far is a hidden
Markov Model, but now is a good time to introduce a higher-performing model, the conditional
random field or CRF (Lafferty, McCallum, and Pereira, 2001). CRFs consistently outperform HMMs
for sequence labeling tasks, and generally do as well or better than other methods. The downside
of CRFs is that they have to be trained using numerical optimization, which is a lot slower than
(supervised) HMMs.

15.1.1 Definition
In a HMM, the parameters to be learned are the p(t′ | t) and p(w | t), which are required to sum to
one. In a CRF, these parameters are no longer probabilities; they are now just numbers that can be
positive or negative, big or small. There are two kinds of parameters: λ(t, t′) for every tag/tag pair,
and µ(t, w) for every tag/word pair. There’s no definition of what the values of these parameters
should be; instead, you initialize them to all zeros and optimize them to maximize the likelihood
of the training data.

108

Chapter 15. Named Entity Recognition 109

Recall that a HMM is (when written out using log-probabilities, and assuming that t0 = <s>
and wn = </s>):

logP (t,w) =

n∑
i=1

(log p(ti | ti−1) + log p(wi | ti)) . (15.1)

There are two potential problems with this model.
First, it seems like a waste of effort to learn P (t,w), as if we wanted to be able to generate

random tagged word sequences. It seems more economical to learn P (t | w).
So, what if we had a model like

logP (t | w) =

n∑
i=1

log p(ti | ti−1, wi) (15.2)

The generation of each tag now depends on more context, so we have to be more careful about
overfitting, but leaving that aside, we have a deeper problem. Consider a sentence like

If I could be a force of nature , I ’d be the van der Waals force . </s>

And suppose that the model incorrectly tags the first 14 words as O:
If
O
I
O
could
O

be
O

a
O
force
O

of
O

nature
O

,
O
I
O
’d
O

be
O

the
O

van
O

der Waals force . </s>

Now, what should P (t15 | O,der) be? It should not favor O or B-person, because those are not
the right labels, and it should not favor I-person, because I-person never comes right after O. We’d
like P (t15 | O,der) to be able to say “There is no good tag in this context,” but it can’t, because a
probability distribution must sum to one.

The solution is to drop the requirement that the generation of each individual tag be governed
by a probability distribution. Instead, we only require that the distribution over tag sequences (t)
be a probability distribution. That is, we replace all the log-probabilities with parameters that can
be positive or negative, big or small:

P (t | w) =
exp s(t,w)∑
t̄
exp s(̄t,w)

(15.3)

s(t,w) =

n∑
i=1

λ(ti−1, ti, wi). (15.4)

where t̄ ranges over all possible tag sequences of length n.
We’ve replaced log p(t′ | t, w′) with λ(t, t′, w′) which is just a number: if it’s high, it means the

model likes to see t, t′, w′ together; if it’s zero, the model doesn’t care; and if it’s low, the model
doesn’t like t, t′, w′.

Our job during training is to maximize the conditional likelihood,

L =
∑

(t,w)∈data
logP (t | w) (15.5)

but we’ll also look at an easier algorithm, the structured perceptron.

CSE 40657/60657: Natural Language Processing Version of November 6, 2019

Chapter 15. Named Entity Recognition 110

15.1.2 Features
Usually, to make λ(t, t′, w′) easier to estimate, we define it in terms of other parameters,

λ(t, t′, w′) = λ1(t, t
′) + λ2(t

′, w′).

Other possibilities exist as well. For example, since we know that words starting with a capital
letter are much more likely to be part of named entities, it would make sense to make the model
sensitive to capitalization:

λ(t, t′, w′) = λ1(t, t
′) + λ2(t

′, w′) + λ3(t
′, cap(w′))

where cap(w′) is 1 iff w′ starts with a capital letter. Then the model will hopefully learn a high
weight for (say) λ3(B-person, 1) which works even if w′ is unseen in training, like Wolfeschlegel-
steinhausenbergerdorff.

15.1.3 As finite transducers
Recall that we wrote an HMM as a finite transducer, where the edges looked like

t t′
t′ : w / p(t′ | t)p(w | t′)

We can write a CRF as a finite transducer too:

t t′
t′ : w / expλ1(t, t

′) expλ2(t
′, w)

If we run this transducer on tags t and words w, then the weight of the path is exp s(t,w), which
is the numerator of (15.3). How do we compute the denominator?

Sometimes, we don’t actually care about the denominator. If we have a trained model and we
just want to find the most likely tag sequence, all tag sequences have the same denominator so we
can just ignore it:

arg max
t

P (t | w) = arg max
t

exp s(t,w)∑
t̄ exp s(t̄,w)

= arg max
t

exp s(t,w),

which we can find using the Viterbi algorithm.

15.1.4 Training
But training is more difficult. As always, we want to maximize the log-likelihood:

logL =
∑

t,w in data
logP (t | w) (15.6)

CSE 40657/60657: Natural Language Processing Version of November 6, 2019

Chapter 15. Named Entity Recognition 111

We do this using stochastic gradient descent, looping over all the sentences, and for each sentence
wwith correct tags t, take a step uphill on logP (t | w). The gradient can be computed by automatic
differentiation or manually:

∇ logL =
∑

t,w in data

(∑
i

λ(ti−1, ti, wi)− Et̄[λ(t̄i−1, t̄i, wk)]

)
(15.7)

Et̄[λ(t̄i−1, t̄i, wk)] =
∑
t̄

P (̄t)λ(t̄i−1, t̄i, wk). (15.8)

There’s a summation over t̄ again, and this one cannot be ignored.

15.1.5 Summing over all tag sequences
Theway thatwe perform the summation is similar to how theViterbi algorithmfinds themaximum
over all possible tag sequences. The only difference is that when a state has multiple incoming
edges, we add the weights instead of taking their maximum.

forward[q0]← 1
forward[q]← 0 for q ̸= q0
for each state q′ in topological order do

for each incoming transition q → q′ with weight p do
forward[q′]← forward[q′] + forward[q]× p

end for
end for

15.2 Structured Perceptron
A possibly more intuitive training algorithm is the structured perceptron. It can be viewed as an
approximation of the abovemethod (in which the expectation of λ(t, t′, w′) is replaced by themost-
probable λ(t, t′, w′)) or it can be thought of as a learning algorithm in its own right.
for each t,w in data do

t̂← arg max̂t P (̂t | w)
for i = 1, . . . , n do

λ(ti−1, ti, wi)← λ(ti−1, ti, wi) + 1
λ(t̂i−1, t̂i, wi)← λ(t̂i−1, t̂i, wi)− 1

end for
end for
The intuition is simple: let the model take its best guess t̂, then reward the features that would

have led to the correct answer t and punish the features that led to the guessed answer t̂. If t̂ = t,
then nothing happens. If t̂ ̸= t, then the model is updated to be more likely to guess t in the future.

If λ(t, t′, w′) is broken down into smaller features, the updates are broken down accordingly.

CSE 40657/60657: Natural Language Processing Version of November 6, 2019

Chapter 15. Named Entity Recognition 112

For example, if λ(t, t′, w′) = λ1(t, t
′) + λ2(t

′, w′):

λ1(ti−1, ti)← λ1(ti−1, ti) + 1

λ2(ti, wi)← λ2(ti, wi) + 1

λ1(t̂i−1, t̂i)← λ1(t̂i−1, t̂i)− 1

λ2(t̂i, wi)← λ2(t̂i, wi)− 1

15.3 RNN+CRFs
The state of the art sequence labeling model is a CRF whose parameters are computed by a RNN
(specifically, a bidirectional RNN with LSTM units, but let’s just assume a single simple RNN).

Recall that a RNN inputs a sequence of vectors x(i) and outputs a sequence of vectors y(i). Here,
we let

x(i) = one-hot vector for wi

λ2(ti, wi) = y(i)

An important caveat is that if a word is used in two different positions, the RNN computes a dif-
ferent y at each position, so the CRF likewise uses a different λw(ti, wi) at each position. To train,
we use gradient ascent to maximize the conditional likelihood, which optimizes the parameters of
the RNN and the rest of the parameters of the CRF (λ1).

CSE 40657/60657: Natural Language Processing Version of November 6, 2019

Bibliography

Lafferty, John, Andrew McCallum, and Fernando Pereira (2001). “Conditional Random Fields:
Probabilistic Models for Segmenting and Labeling Sequence Data”. In: ICML, pp. 282–289.

113

