
Chapter 4

Weighted Automata

If you’ve taken Theory of Computing, you should be quite familiar with finite automata; if not, you
may be familiar with regular expressions, which are equivalent to finite automata. Manymodels in
NLP can be thought of as finite automata, or variants of finite automata, includingn-gram language
models. Although this may feel like overkill at first, we’ll soon see that formalizingmodels as finite
automata makes it much easier to combine models in various ways.

4.1 Definitions
A finite automaton (FA) is an imaginary machine that reads in a string and outputs an answer, either
“accept” or “reject.” (For example, a FA could accept onlywords in an English dictionary and reject
all other strings.) At any given time, the machine is in one state out of a finite set of possible states.
It has rules, called transitions, that tell it how to move from one state to another.

A FA is typically represented by a directed graph. We draw nodes to represent the various
states that the machine can be in. The node can be drawn with or without the state’s name inside.
The machine starts in the initial state (or start state), which we draw as:

The edges of the graph represent transitions, for example:

q r
a

which means that if the machine is in state q and the next input symbol is a, then it can read in a
andmove to state r. The machine also has zero or more final states (or accept states), which we draw
as:

If the machine reaches the end of the string and is in a final state, then it accepts the string.
We say that a FA is deterministic if every state has the property that, for each label, there is

exactly one exiting transition with that label. Otherwise, it is nondeterministic. We will focus on
deterministic FAs for now.

Here’s a more formal definition (for those who like formal definitions).

19

Chapter 4. Weighted Automata 20

Definition 1. A finite automaton is a tupleM = ⟨Q,Σ, δ, s, F ⟩, where:
• Q is a finite set of states
• Σ is a finite alphabet
• δ is a set of transitions of the form q

a−→ r, where q, r ∈ Q and a ∈ Σ

• s ∈ Q is the initial state
• F ⊆ Q is the set of final states

A string w = w1 · · ·wn ∈ Σ∗ is accepted by M iff there is a sequence of states q0, . . . , qn ∈ Q such
that q0 = s, qn ∈ F , and for all i, 1 ≤ i ≤ n, there is a transition qi−1

wi−→ qi. We write L(M) for the
set of strings accepted byM .

A weighted finite automaton adds a weight to each transition (that is, δ is a mappingQ×Σ×Q →
R). The weight of an accepting path through a weighted FA is the product of the weights of the
transitions along the path. A weighted FA defines a weighted language, or a distribution over
strings, in which the weight of a string is the sum of the weights of all accepting paths of the string.

In a probabilistic FA, each state has the property that the weights of all of the exiting transitions
sum to one. Moreover, there is a special stop symbol, which we write as </s>, that we assume
appears at the end of every string, and only at the end of every string. Then the weighted FA also
defines a probability distribution over strings.

4.2 Language Models
So, an m-gram language model is a probabilistic FA with a very simple structure. If we continue
to assume a bigram language model, we need a state for every observed context, that is, one for
<s>, which we call q<s>, and one for each word type a, which we call qa. And we need a final state
q</s>. For all a, b, there is a transition

qa
b/p(b|a)−−−−−→ qb,

and for every state qa, there is a transition

qa
</s>/p(</s>|a)−−−−−−−−−→ q</s>.

The transition diagram (assuming an alphabet Σ = {a, b}) looks like this:

q<s>

qa

qb

q</s>

a / p(a
| <s>)

b / p(b | <s>)

a / p(a | a)

b
/
p
(b

| a
)

a
/
p
(a

|
b
)

b / p(b | b)

</s> / p(</s> | <s>)

</s> / p(</s> | a)

</s> / p(</s> | b)

(4.1)

CSE 40657/60657: Natural Language Processing Version of September 6, 2019

Chapter 4. Weighted Automata 21

Generalizing tom-grams, we need a state for every (m−1)-gram. It would bemessy to actually
draw the diagram, but the transitions are not hard to describe:

• For all u ∈ Σm−1, there is a state qu.
• The start state is q<s>m−1 .
• The accept state is q</s>.
• For all a ∈ Σ, u ∈ Σm−2, b ∈ Σ, there’s a transition

qau
b/p(b|au)−−−−−−→ qub.

• For all u ∈ Σm−1, there’s a transition

qu
</s>/p(</s>|u)−−−−−−−−−→ q</s>.

One can imagine designing other kinds of languagemodels aswell. A commonly used structure
is a trie, used for storing lists like dictionaries:

q<s>

qa

a

qb
b

qaa
a

· · ·

qab
b · · ·

...

qba

a

· · ·

qbb

b

· · ·

...

...

The portion shown accepts the strings {a, aa, ab, ba}. You could also add transitions reading space
symbols from the accept states back to the start state to make the automaton recognize strings of
words.

4.3 Training
If we are given a collection of strings w1, . . . , wN and a DFA M , we can learn weights very easily.
For each string wi, run M on wi and collect, for each state q, counts c(q), c(q, a) for each word a,
and c(q, </s>), which is the number of times thatM stops in state q. Then the weight of transition
q

a−→ r is c(q,a)
c(q) .

If the automaton is not deterministic, the above won’t work. This is because, for a given string,
there might be more than one path that accepts it, and we don’t know which path’s transitions to
count. Training nondeterministic automata is the subject of a later chapter.

CSE 40657/60657: Natural Language Processing Version of September 6, 2019

Chapter 4. Weighted Automata 22

4.4 Smoothing
A smoothed m-gram model can also be represented as a weighted automaton. In principle, it
should be easy – the only difference would be that the transition weights would be smoothed
probabilities instead of unsmoothed probabilities.

However, this would mean creating a state qu for all u ∈ Σm−1, even if u was not observed in
the training data. Suppose that |Σ| = 104 andm = 5; then we would need 1016 states!

It’s possible to reduce the size of the automaton without changing any string weights, but to
really do this well, we need nondeterminism. Another solution would be to represent all these
states and their transitions implicitly: that is, to construct them only as needed (and maybe destroy
them when no longer needed).

CSE 40657/60657: Natural Language Processing Version of September 6, 2019

