
Chapter 5

Recurrent Neural Networks

Many alternatives to n-gram language models have been proposed, but, for a long time, none
managed to displace n-gram language models in practice. But in recent years, neural networks
have become powerful enough to retire n-grams at last. The standard way of defining a language
model as a neural network is as a recurrent neural network (RNN). They’re used for all kinds of
language related things, like languagemodeling, speech, translation. They are often used as a kind
of preprocessing step for a wide variety of tasks, because the y’s can be seen as a representation of
the words that incorporates contextual information.

5.1 Motivation
Let’s start with a bigram language model. Recall that there are states q<s> and q</s>, and a state qa
for every a ∈ Σ. We show what the transitions look like for two symbols a, b ∈ Σ, but you can
imagine what it would look like in general.

q<s>

qa

qb

q</s>

a / p(a
| <s>)

b / p(b | <s>)

a / p(a | a)

b
/
p
(b

| a
)

a
/
p
(a

|
b
)

b / p(b | b)

</s> / p(</s> | <s>)

</s> / p(</s> | a)

</s> / p(</s> | b)

(5.1)

If you had to predict the next word in a sentence, youmight use information from very far back
in the string. To take a simple example, if there’s a left parenthesis, it should be matched by a right
parenthesis potentially very far away. Here’s a finite automaton that keeps track of whether we’re
inside parentheses. Again, we just show transitions for two symbols a, b ∈ Σ, but you can imagine

25



Chapter 5. Recurrent Neural Networks 26

what it would look like in general.

q0 q1

a, b a, b
(

)</s>

(5.2)

Presumably, the probability of seeing a right parenthesis is low in q0, but high in q1. We can intersect
the bigram automatonwith this automaton, andwe get a new automaton thatmodels both bigrams
and parentheses. If you haven’t seen intersection of finite automata, or can’t remember it, it’s
sufficient to try to imagine a finite automaton that keeps track of both bigrams and parentheses at
the same time. Each state would remember both the previous symbol and whether or not we are
inside parentheses.

Now, we can make a similar automaton to keep track of left and right square brackets (sorry
to focus on punctuation; there are plenty of long-distance phenomena in the words themselves,
but none as clear-cut as punctuation). Intersect all three automata (bigram, parentheses, square
brackets) together and we get an even bigger and more powerful automaton. I can’t draw the
whole thing, but here’s what the intersection of the parentheses and square brackets automata
looks like:

q0 q1

q2 q3

a, b a, b

a, b a, b

(

)

(

)

[] []

</
s>

(5.3)

We could dream up all kinds of features, design an automaton for each one, and intersect them
all together. But then we would have two problems.

The first problem is that coming up with ideas for structuring the state space is laborious. Can
the model learn this automatically? The answer is actually yes – we haven’t yet covered the meth-
ods to do this, but we could just make an automatonwith a bunch of states and transitions between
all of them, and the model could automatically figure out what to do with them.

The second, more serious, problem is that we are quickly going to end up with many states. If
there are 30 features, even if they are all just on/off features like our parentheses feature, there are
230 ≈ 1 billion states, and something like 260 ≈ 1018 probabilities that we have to estimate. Most
of these are going to be really bad estimates, because some states will be visited very rarely or not
at all.

RNNsmake this easier. They have a state space that is just as big as in the above thought exper-
iment, defined by units that correspond to what we called “features.” But they define the transition
function in a different way that has many fewer parameters and can therefore be estimated much
better.

CSE 40657/60657: Natural Language Processing Version of September 9, 2019



Chapter 5. Recurrent Neural Networks 27

5.2 Example
Figure 5.2 shows a run of a simple RNN with 30 hidden units trained on the Wall Street Journal
portion of the Penn Treebank, a common toy dataset for neural language models. When we run
this model on a new sentence, we can visualize what each of its hidden units is doing at each time
step. The units have been sorted by how rapidly they change.

The first unit seems to be unchanging; maybe it’s useful for other units to compute their values.
The second unit is blue on the start symbol, then becomes deeper and deeper red as the end of the
sentence approaches. This unit seems to be measuring the position in the sentence and/or trying
to predict the end of the sentence. The third unit is red for the first part of the sentence, usually
the subject, and turns blue for the second part, usually the predicate. The rest of the units are
unfortunately difficult to interpret. But we can see that the model is learning something about the
large-scale structure of a sentence, without being explicitly told anything about sentence structure.

Other kinds of RNNs that perform better than this simple RNN have been shown to have units
that perform various functions, including keeping track of parentheses (Karpathy, Johnson, and
Fei-Fei, 2016).

5.3 Definition
These days most people do not implement RNNs themselves; they just one of many toolkits that
do it for them. But for reference, here’s a definition. A so-called simple RNN is defined as follows.

• Number the symbols of the alphabet, starting from 1. The ordering is completely arbitrary.
For example, if the alphabet is {a, b, <s>, </s>}, we could number them: a = 1, b = 2, <s> =
3, </s> = 4. From now on, we will use a symbol and its number interchangeably.

• If the input string is w = w1 · · ·wn, where wn = </s>, let w0 = <s>. Define a sequence of
input vectors x(1), . . . , x(n). (The superscripts are written with parentheses to make it clear
that this isn’t exponentiation.) Each vector x(i) encodes the previous input symbol, wi−1, as
a one-hot vector, which means that x(i) is a vector with all 0’s except for a 1 at position wi−1.
For example, if w = aba</s>, then the input vectors would be

x(1) =


0
0
1
0

 x(2) =


1
0
0
0

 x(3) =


0
1
0
0

 x(4) =


1
0
0
0


• The output of the RNN is another sequence of vectors, y(1), . . . , y(n), each of which contains

the RNN’s predictions for the next word wi:

y(i)wi
= P (wi | w0w1 · · ·wi−1).

For example, if

y(1) =


0.6
0.2
0
0.4

 ,

CSE 40657/60657: Natural Language Processing Version of September 9, 2019



Chapter 5. Recurrent Neural Networks 28

−6 −4 −2 0 2 4 6

0

0.2

0.4

0.6

0.8

1

Figure 5.1: The sigmoid function is 0 for very negative values, 1 for very positive values, and
smooth in between.

that means
P (w1 = a | <s>) = 0.6

P (w1 = b | <s>) = 0.2

P (w1 = <s> | <s>) = 0

P (w1 = </s> | <s>) = 0.4

To compute this, the RNN computes an intermediate sequence of vectors h(1), . . . ,h(n).

h(0) = 0 (5.4)
h(i) = sigmoid(Ah(i−1) + Bx(i) + c) (5.5)

where (see Figure 5.1)

sigmoid(z) = 1

1 + exp(−z) . (5.6)

Then the outputs are computed as:
y(i) = softmax(Dh(i) + e), (5.7)

where the softmax function takes the exp of every component and then normalizes them to sum to
one:

s(i) = Dh(i) + e (5.8)

y
(i)
j =

exp s
(i)
j∑

j′ exp s
(i)
j

. (5.9)

CSE 40657/60657: Natural Language Processing Version of September 9, 2019



Chapter 5. Recurrent Neural Networks 29

The vectors/matrices A,B, c,D, e are parameters of the model. Their components can be arbi-
trary real numbers, and they don’t have any intuitive interpretation (like probabilities do). They
will be learned during the training process, as described in the next subsection.

5.4 Training
We are given a set of training examples, each of which can be converted into a sequence of input
vectors, x(1), . . . , x(n), and a sequence of correct output vectors, z(1), . . . , z(n). When training a
language model, we’re always trying to predict the next word, so we let z(i) = x(i+1) and z(n) be
the one-hot vector for </s>.

For each training example, the RNN outputs a sequence of vectors, y(1), . . . , y(n), which are
vectors of probabilities. Ideally, we want the y(i) to be close to the z(i).

During training, we try to find the parameters that maximize the following objective function
(shown here for a single sentence; in general, we would sum over multiple sentences):

L = logP (z(1) · · · z(n)) (5.10)

=

n∑
i=1

z(i) · logy(i) (5.11)

where the log is elementwise and · is a vector dot product (inner product). Since each z(i) is a one-
hot vector, dotting it with another vector selects a single component from that other vector, which
in this case is the log-probability of the ith word.

To maximize this function, there are lots of different methods. We’re going to look at the easiest
(but still very practical)method, stochastic gradient ascent.1 It is also known as themethod of steepest
ascent. Imagine that the log-likelihood is an infinite, many-dimensional surface. Each point on the
surface corresponds to a setting of the λ’s, and the altitude of the point is the log-likelihood for
that setting of the λ’s. We want to find the highest point on the surface. We start at an arbitrary
location (say, with all the λ’s set to zero) and then repeatedly move a little bit in the steepest uphill
direction.

Let λ be the vector of all the parameters of the model, and logL(λ) is the objective function, or
the function we’re maximizing. Gradient ascent looks like this:
initialize parameters λ to zero
repeat

λ← λ+ η∇ (logL(λ))
until done

The function ∇(logL) is the gradient of logL and gives the direction, at λ, that goes uphill the
steepest. These days, it’s uncommon to need to figure out what the gradient is by hand, because
there are numerous automatic differentiation packages that do this for you.

The learning rate η > 0 controls how far we move at each step.
Question 1. What happens if η is too small? too big?

1If we’re minimizing a function, then we use stochastic gradient descent, and this is the name that the method is more
commonly known by.

CSE 40657/60657: Natural Language Processing Version of September 9, 2019



Chapter 5. Recurrent Neural Networks 30

To guarantee convergence, η should decrease over time (for example, η = 1/t), but it’s also common
in practice to leave it fixed.

In stochastic gradient ascent, at each iteration of the above algorithm, L is the objective function
for a single sentence, and we change to a new sentence at each iteration.

5.5 Tricks
There are a number of tricks that are important for training well. This is not a complete list, but
these are the most essential and/or easiest tricks.

Minibatching To speed up training and/or to reduce random variations between sentences, it’s
standard to train on a small number (10–1000) of sentences at a time instead of a single sentence
at a time. If we can process the sentences in one minibatch in parallel, we get a huge speedup.
However, a major nuisance is that the sentences are all different lengths. The typical solution goes
like this:

• Sort all the sentences by length.
• Divide up the sentences into minibatches. Because of the sorting, each minibatch contains

sentences with similar lengths.
• In each minibatch, equalize the lengths of sentences by appending a special symbol <pad>.
• When computingL, mask out the <pad> symbols so that themodel doesn’t waste effort learn-

ing to predict <pad>.

Shuffling Before each pass through the training data (an epoch), randomly shuffle the order of
the training sentences or minibatches.

Gradient clipping When using SGA on RNNs, a common problem is known as the vanishing
gradient problem and its evil twin, the exploding gradient problem. What happens is that L is a a
very long chain of functions (n times a constant). When we differentiate L, then by the chain rule,
the partial derivatives are products of the partial derivatives of the functions in the chain. Suppose
these partial derivatives are small numbers (less than 1). Then the product of many of themwill be
a vanishingly small number, and the gradient update will not have very much effect. Or, suppose
these partial derivatives are large numbers (greater than 1). Then the product of many of themwill
explode into a very large number, and the gradient updatewill be very damaging. This is definitely
the more serious problem, and preventing it is important. There are fancier learning methods than
SGA that alleviate this problem (currently, the most popular is probably Adam), but for SGA, the
simplest fix is gradient clipping: just check if the norm of the gradient is bigger than 5, and if so,
scale it so that its norm is just 5.

CSE 40657/60657: Natural Language Processing Version of September 9, 2019



Chapter 5. Recurrent Neural Networks 31

Figure 5.2: Visualization of a simple RNN language model on English text.

CSE 40657/60657: Natural Language Processing Version of September 9, 2019



Bibliography

Karpathy, Andrej, Justin Johnson, and Li Fei-Fei (2016). “Visualizing andUnderstanding Recurrent
Neural Networks”. In: Proc. ICLR.

32


