
Chapter 6

Text Input

6.1 Problem
In the last two chapterswe looked at languagemodels, and in your first homework you are building
language models to enable the computer to guess the next work that the user will type. Now, what
if we want the computer to actually correct typos? We can use a hidden Markov model (HMM)
do to this. HMMs are useful for a lot of other things as well. Later in this unit, we’ll look at
speech recognition and optical character recognition. For your homework, you’ll try converting
Shakespearean English into modern English. But here, we’ll focus on typo correction.

6.2 Hidden Markov Models
6.2.1 Definition
AnHMM is an example of a generative model, which tries to model the probability not just of out-
puts given inputs, but the probability of both inputs and outputs. They are sort of like investigators
at a crime scene: instead of trying to reason directly from evidence (input) to a culprit (output), it
is natural to imagine, for various possible culprits, how the crimemay have played out to yield the
observed evidence, and then decide which of those various scenarios is the most plausible.

Similarly, instead of thinking directly about finding the most probable sequence of true char-
acters, we think about how the observed sequence might have come to be. Let w = w1 · · ·wn be a
sequence of observed characters and let t = t1 · · · tn be a sequence of true characters that the user
wanted to type. To distinguish between the two, we’ll write observed characters in typewriter
font and intended characters in sans-serif font.

We want to find the most probable t givenw, which is the same as the t that maximizes the joint
probability:

arg max
t

P (t | w) = arg max
t

P (t,w) (6.1)

which we can rewrite as
P (t,w) = P (t)P (w | t). (6.2)

33

Chapter 6. Text Input 34

The first term, P (t), models things that a user might plausibly want to type, and can be described
using a language model, for example, a bigram model:

P (t) = p(t1 | <s>)×

(
n∏

i=2

p(ti | ti−1)

)
× p(</s> | tn). (6.3)

The second term, P (w | t), models how what the user wanted to type (t) becomes what they
actually type (w). Let’s call this the typo model. We choose a very simple definition for it:

P (w | t) =
n∏

i=1

p(wi | ti). (6.4)

This is a hidden Markov model (HMM).
Suppose that we are given labeled data, like:

t t y p e
w t h p e

In this case, the HMM is easy to train: just count and divide for both the language model and the
typo model.

But what we don’t know how to do is decode: given w, what’s the most probable t? It is not
good enough to say that our best guess for ti is

t̂i = arg max
t

p(t | ti−1)p(wi | t) (wrong).

Why? Imagine that the user types thpe. At the time he/she presses h, it seems like a very plausible
letter to follow t. But when he/she types pe, it becomes clear that there was a typo. We now go
back and realize that h was meant to be y. So what we really want is

t̂ = arg max
t

P (t | w) = arg max
t

P (t)P (w | t). (6.5)

Naively, this would seem to require searching over all possible t, of which there are exponentially
many. But below, we’ll see how to do this efficiently, not just for HMMs but for a much broader
class of models.

6.2.2 Decoding
Suppose that our HMM has the parameters shown in Table 6.1. (In reality, of course, there would
be many more.)

Now, given the observed characters thpe, we can construct a FSA that generates all possible
sequences of true characters for this sentence. See Figure 6.1. Here’s how to construct this FSA
(called a lattice or trellis) for an HMM. If the observed sequence is w = w1 · · ·wn, and the alphabet
size is |Σ|, then the states form a grid with |Σ| rows and n + 2 columns. Call each state qi,t where
0 ≤ i ≤ n and t ∈ Σ. The meaning of each such state is that we are at time step i and the previous
true character is t. The start state is q0,<s> and the accept state is qn+1,</s>. There’s a transition from
every state qi−1,t to every state qi,t′ with weight p(t′ | t)p(wi | t′).

CSE 40657/60657: Natural Language Processing Version of September 23, 2019

Chapter 6. Text Input 35

p(t′ | t) p(w | t)
t

t′ <s> e h p t y
e 0.2 0.2 0.5 0.2 0.1 0.4
h 0.2 0.1 0 0.1 0.6 0
p 0.1 0.1 0 0.2 0 0.1
t 0.4 0.2 0.1 0.1 0.1 0.1
y 0.1 0.1 0 0.2 0.1 0

</s> 0 0.3 0.4 0.2 0.1 0.4

t
w e h p t y
e 1 0 0 0.5 0
h 0 0.5 0 0 0.25
p 0 0 1 0 0
t 0 0 0 0.5 0.25
y 0 0.5 0 0 0.5

Table 6.1: Example parameters of an HMM.

q0,<s>

q1,t

q1,y

q2,h

q2,y

q3,p

q4,e

q4,t

q5,</s>
t / 0.4 · 0.5y

/
0.1 · 0.25

h /
0.
6
· 0
.5

y / 0.1 · 0.25

h
/
0
· 0

.5

y / 0 · 0.25

p / 0 · 1

p /
0.
1
· 1

e /
0.
2
· 1

t / 0.1 · 0.5

</s>
/
0.3

</s> / 0.1

Figure 6.1: Weightedfinite automaton for all possible true characters corresponding to the observed
characters thpe.

CSE 40657/60657: Natural Language Processing Version of September 23, 2019

Chapter 6. Text Input 36

Each path through this FSA corresponds to a possible true string t that the usermay havemeant
to type, and the weight of each path is P (t, thpe). Our goal is to find the highest-weight path
throughM . We can do this efficiently using the Viterbi algorithm, originally invented for decoding
error-correcting codes. It works not only on FSAs of the form described above, but any acyclic FSA.

The Viterbi algorithm is a classic example of dynamic programming. We need to visit the states
ofM in topological order, that is, so that all the transitions go from earlier states to later states in the
ordering. For the example above, the states are all named qi,σ ; we visit them in order of increasing
i. For each state q, we want to compute the weight of the best path from the start state to q. This is
easy, because we’ve already computed the best path to all of the states that come before q. We also
want to record which incoming transition is on that path.

There are two common ways of writing the Viterbi algorithm. They are equivalent and differ
only in the order inwhich transitions are processed. Oneway processes all the incoming transitions
of a state at once:

viterbi[q0]← 1
viterbi[q]← 0 for q ̸= q0
for each state q′ in topological order do

for each incoming transition q → q′ with weight p do
if viterbi[q]× p > viterbi[q′] then

viterbi[q′]← viterbi[q]× p
pointer[q′]← q

end if
end for

end for
The other way processes all the outgoing transitions of a state at once:

viterbi[q0]← 1
viterbi[q]← 0 for q ̸= q0
for each state q in topological order do

for each outgoing transition q → q′ with weight p do
if viterbi[q]× p > viterbi[q′] then

viterbi[q′]← viterbi[q]× p
pointer[q′]← q

end if
end for

end for
In either case, after the algorithm completes, the maximum weight is viterbi[qf], where qf is the
final state.
Question 2. How do you use the pointers to reconstruct the best path?

6.3 Hidden Markov Models (Unsupervised)
Above, we assumed that the model was given to us. If we had parallel data, that is, data consisting
of pairs of strings where one string has typos and the other string is the corrected version, then

CSE 40657/60657: Natural Language Processing Version of September 23, 2019

Chapter 6. Text Input 37

q0,<s>
1

q1,t
0.2

q1,y
0.025

q2,h
0.06
0

q2,y
0.005
0

q3,p
0

0.0005

q4,e
0.0001

q4,t
0.000025

q5,</s>
0.00003
0.0000025t / 0.4 · 0.5y

/
0.1 · 0.25

h /
0.
6
· 0
.5

y / 0.1 · 0.25

h
/
0
· 0

.5

y / 0 · 0.25

p / 0 · 1

p /
0.
1
· 1

e /
0.
2
· 1

t / 0.1 · 0.5

</s>
/
0.3

</s> / 0.1

Figure 6.2: Example run of the Viterbi algorithm on the FSA of Figure 6.1. Probabilities are written
inside states; probabilities that are not maximum are struck out. The incoming edge that gives the
maximum probability is drawn with a thick rule.

CSE 40657/60657: Natural Language Processing Version of September 23, 2019

Chapter 6. Text Input 38

it’s easy to train the model (just count and divide). This kind of data is called complete because it
consists of examples of exactly the same kind of object that our model is defined on.

What if we have incomplete data? For example, what if we only have a collection of strings with
typos and a collection of strings without typos, but the two collections are not parallel? We can
still train the language model as before, but it’s no longer clear how to train the typo model. To do
this, we need a fancier (and slower) training method. We’ll first look at a more intuitive version,
and then a better version that comes with a mathematical guarantee.

The basic idea behind both methods is a kind of bootstrapping: start with some model, not
necessarily a great one. For example,

p(w | t) =

{
2

|Σt|+1 if t = w
1

|Σt|+1 if t ̸= w

where Σt is the alphabet of true characters.
Now that we have a model, we can correct the typos in the typo part of the training data. This

gives us a collection of parallel strings, that is, pairs of strings where one string has typos and the
other string is its corrected version. The correctionsmight not be great, but at least we have parallel
data.

Then, use the parallel data to re-train the model. This is easy (just count and divide). The
question is, will this new model be better than the old one?

6.3.1 Hard Expectation-Maximization
“Hard” Expectation-Maximization is the “hard” version of themethodwe’ll see in the next section.
It’s “hard” not because it’s hard to implement but because when it corrects the typo part of the
training data, it makes a hard decision; that is, it commits to one and only one correction for each
string. We’ve seen already that we can do this efficiently using the Viterbi algorithm.

In pseudocode, hard EM works like this. Assume that we have a collection of N observed
strings, w(1),w(2), . . .w(N).

initialize the model
repeat

for each observed string: w(i) do ▷ Viterbi E step
compute the best correction, t̂ = arg maxt P (t | w(i))
for each position j do

c(̂t,w(i)
j) += 1

end for
end for
for all w, t do ▷M step

p(w | t) = c(t,w)∑
w′ c(t,w′)

end for
until converged

In practice, this method is easy to implement, and can work very well. Let’s see what happens
when we try this on some real data. The corrected part is 50,000 lines from an IRC channel for
Ubuntu technical support. (Actually this data has some typos, but we pretend it doesn’t.) The
typo part is another 50,000 lines with typos artificially introduced.

CSE 40657/60657: Natural Language Processing Version of September 23, 2019

Chapter 6. Text Input 39

Using the initial model, we get corrections like:
observed: bootcharr? i recall is habdy.
guess: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

But some are slightly less bad, like:
observed: Hello :)
guess: I the t?

After a few iterations, these two lines have improved to:
observed: bootcharr? i recall is habdy.
guess: tootcharr? i recath is hathe.

and
observed: Hello :)
guess: I tho e)

So it’s learned to recover the fact that letters usually stay the same, but it still introduces more
errors than it corrects.

6.3.2 Expectation-Maximization
Above, we saw that the initial model sometimes corrects strings to all carets (^) and sometimes to
strings with lots of variations on the word the. What if all the strings were of the former type? The
model would forget anything about any true character other than ^, and it would get stuck in this
condition forever.

More generally, when the model looks at a typo string, it defines a whole distribution over pos-
sible corrections of the string. For example, the initialmodel likes ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
best, but it also knows that just leaving everything alone is better than random characters. When
we take only the model’s best guess, we throw away potentially useful information.

More formally, if we have an observed stringw, the model defines a distribution over possible
corrections:

P (t | w) =
P (w | t)P (t)

P (w)

=
P (w | t)P (t)∑
t′ P (w | t′)P (t′) . (6.6)

In hard EM,we just took the highest-probability t from this distribution and pretended that we saw
that as training data. In true EM, we consider every possible t and pretend that we saw it P (t | w)
times. The idea of a fractional count is intuitively somewhat strange, but mathematically not a
problem: we estimate probabilities by counting and dividing, and that works just as well when the
counts are fractional.

The rest of this section describes how to do this. As a preview, when we use true EM, our two
examples from above become:
observed: bootcharr? i recall is habdy.
guess: bootcharr, i recall is hably.

CSE 40657/60657: Natural Language Processing Version of September 23, 2019

Chapter 6. Text Input 40

and
observed: Hello :)
guess: Hello :)

Still not perfect, but better. A stronger language model would know that “hably” is not a word.

Slow version of EM
Here’s some pseudocode, but it’s inefficient and should not be implemented.

1: initialize the model
2: repeat
3: for each observed string w(i) do ▷ E step
4: for every possible correction t do ▷ intractable!
5: compute P (t | w(i))
6: for each position j do
7: c(tj ,w(i)

j) += P (t | w(i))
8: end for
9: end for
10: end for
11: for all w, t do ▷M step
12: p(w | t) = c(t,w)∑

w′ c(t,w′)

13: end for
14: until converged

The loop at line 4 is over an exponential number of corrections t, which is not practical. Actualy, it’s
worse than that, because according to equation (6.6), to even compute a single P (t | w(i)) requires
that we divide by P (w(i)), and this requires a sum over all t′.

Forward algorithm
Let’s tackle this problem first: how do we compute P (w) efficiently? Just as the Viterbi algorithm
uses dynamic programming to maximize over all t′ efficiently, there’s an efficient solution to sum
over all t′. It’s a tiny modification to the Viterbi algorithm. We assume, as before, that we have a
finite automaton that compactly represents all possible t (e.g., Figure 6.1), and the weight of a path
is the probability P (t,w).

forward[q0]← 1
forward[q]← 0 for q ̸= q0
for each state q′ in topological order do

for each incoming transition q → q′ with weight p do
forward[q′] += forward[q]× p

end for
end for

This is called the forward algorithm. The only difference is that wherever the Viterbi algorithm took
amax of twoweights, the forward algorithm adds them. Assuming that the automaton has a single
final state qf , we have forward[qf] = P (w), the total probability of all the paths in the automaton.

CSE 40657/60657: Natural Language Processing Version of September 23, 2019

Chapter 6. Text Input 41

Fast version of EM
Now let’s return to our pseudocode for EM. How do we do the loop over t efficiently? We rewrite
the pseudocode in terms of the finite automaton and reorder the loops so that, instead of looping
over all positions of all t, we now loop over the transitions of this automaton:

1: initialize the model
2: repeat
3: for each observed string w(i) do ▷ E step
4: form automaton that generates all possible twith weight P (t,w(i))
5: compute P (w(i)) ▷ forward algorithm
6: for every transition e = (qi,t → qi+1,t′) do
7: compute weight p of all paths using transition e
8: c(t′, wi+1) += p/P (w(i)) ▷ because e corrects wi+1 to t′

9: end for
10: end for
11: for all w, t do ▷M step
12: p(w | t) = c(t,w)∑

w′ c(t,w′)

13: end for
14: until converged

Line 7 computes the total weight of all paths that go through transition e. To compute this, we need
an additional helper function.

Backward algorithm
The backward weights are the mirror image of the forward weights: the backward weight of state
q, written backward[q], is the total weight of all paths from q to the final state qf .

backward[qf]← 1
backward[q]← 0 for q ̸= qf
for each state q in reverse topological order do

for each outgoing transition q → q′ with weight p do
backward[q] += p× backward[q′]

end for
end for

Note that forward[qf] = backward[q0]; both are equal to P (w(i)), the total weight of all paths.
When implementing the forward and backward algorithms, it’s helpful to check this.

One more thing. . .

Now given transition e = (q
p−→ r), we want to use these quantities to compute the total weight of

all paths using transition e. The total weight of all paths going into q is forward[q], and the weight
of e itself is p, and the total weight of all paths going out of r is backward[r], so by multiplying all
three of these together, we get the total weight of all paths going through e. See Figure 6.3.

So, we can implement line 7 above as

c(t′, wi+1) +=
forward[q]× p× backward[r]

forward[qf]
. e = (q

p−→ r) (6.7)

CSE 40657/60657: Natural Language Processing Version of September 23, 2019

Chapter 6. Text Input 42

q0 qforward[q] r qfbackward[r]

(a) (b)

q0 q r qfforward[q] a / p backward[r]

(c)

Figure 6.3: (a) The forward probability α[q] is the total weight of all paths from the start state to q.
(b) The backward probability β[q] is the total weight of all paths from to q to the final state. (c) The
total weight of all paths going through an edge q → rwithweight p is forward[q]×p×backward[r].

That completes the algorithm.
The remarkable thing about EM is that each iteration is guaranteed to improve the model, in

the following sense. We measure how well the model fits the training data by the log-likelihood,

L =
∑
i

logP (w(i)).

In other words, a model is better if it assigns more probability to the strings we observed (and less
probability to the strings we didn’t observe). Each iteration of EM is guaranteed either to increase
L, or else the model was already at a localmaximum of L. Unfortunately, there’s no guarantee that
we will find a global maximum of L, so in practice we sometimes run EM multiple times from
different random initial points.

6.4 Finite-State Transducers
HMMs are used for a huge number of problems, not just in NLP and speech but also in computa-
tional biology and other fields. But they can get tricky to think about if the dependencies we want
to model get complicated. For example, what if we want to use a trigram language model instead
of a bigram language model? It can definitely be done with an HMM, but it might not be obvious
how. If we want a text input method to be able to correct inserted or deleted characters, we really
need something more flexible than an HMM.

In the last chapter, we saw howweighted finite-state automata provide a flexible way to define
probability models over strings. But here, we need to do more than just assign probabilities to
strings; we need to be able to transform them into other strings. To do that, we need finite-state
transducers.

CSE 40657/60657: Natural Language Processing Version of September 23, 2019

Chapter 6. Text Input 43

6.4.1 Definition
A finite-state transducer is like a finite-state automaton, but has both an input alphabet Σ and an
output alphabet Σ′. The transitions look like this:

q r
a : a′ / p

where a ∈ Σ ∪ {ϵ}, a′ ∈ Σ′ ∪ {ϵ}, and p is the weight.
A transition a : ϵmeans “delete input symbol a,” and ϵ : a′ means “insert output symbol a′.”
Whereas a FSA defines a set of strings, a FST defines a relation on strings (that is, a set of pairs

of strings). A string pair ⟨w,w′⟩ belongs to this relation if there is a sequence of states q0, . . . , qn
such that for all i, there is a transition qi−1

wi:w
′
i−−−→ qi.

For now, the FSTs we’re considering are deterministic in the sense that given an input/output
string pair, there’s at most one way for the FST to accept it. But given just an input string, there can
be more than one output string that the FST can generate.

A weighted FST adds a weight to each transition. The weight of an accepting path through a
FST is the product of the weights of the transitions along the path.

A probabilistic FST further has the property that for each state q and input symbol a, the weights
of all of the transitions leaving q with input symbol a or ϵ sum to one. Then the weights of all
the accepting paths for a given input string sum to one. That is, the WFST defines a conditional
probability distribution P (w′ | w).

So a probabilistic FST is a way to define P (w | t). Let’s consider a more sophisticated typo
model that allows insertions and deletions. For simplicity, we’ll restrict the alphabet to just the
letters e and r. The typo model now looks like this:

q0

q1

q2

r : r
r : e
e : r
e : e
ϵ : e
ϵ : r

e : ϵ
r : ϵ

</s>
: </s>

r : r
r : e
e : r
e : e

</
s>
: <

/s
>

CSE 40657/60657: Natural Language Processing Version of September 23, 2019

Chapter 6. Text Input 44

Note that this allows at most one deletion at each position: after a deletion, we move to state q1, in
which no further deletions are allowed. The reason for this is that unlimited deletions will cause
trouble for us later on.

Here’s the same FST again, but with probabilities shown. Notice which transition weights sum
to one.

q0

q1

q2

r : r / 0.4
r : e / 0.2
e : r / 0.2
e : e / 0.4
ϵ : e / 0.1
ϵ : r / 0.1

e : ϵ / 0.2
r : ϵ / 0.2

</s>
: </s>

/ 0.8

r : r / 0.6
r : e / 0.4
e : r / 0.4
e : e / 0.6

</
s>

: <
/s

> /
1

(6.8)

For example, for state q0 and symbol e, we have

q0
e:r−→ q0 0.2

q0
e:e−→ q0 0.4

q0
ϵ:e−→ q0 0.1

q0
ϵ:r−→ q0 0.1

q0
e:ϵ−→ q1 0.2

1

CSE 40657/60657: Natural Language Processing Version of September 23, 2019

Chapter 6. Text Input 45

6.4.2 Composition
We have a probabilistic FSA, call it M1, that generates sequences of true characters (a bigram
model):

q0 q1 q2

r : r e : e

</s> : </s>

r : r

e : e
</s> : </s> (6.9)

Andwe have a probabilistic FST, call itM2, thatmodels how the usermightmake typographical
errors, shown above (6.8). Now, we’d like to combine them into a single machine that models both
at the same time.

We’re going to do this using FST composition. First, change M1 into a FST that just copies its
input to its output. We do this by replacing every transition

q
a/p−−→ r

with
q

a:a/p−−−→ r.

Then, we want to feed its output to the input of M2. In general, we want to take any two FSTs
M1 and M2 and make a new FST M that is equivalent to feeding the output of M1 to the input
of M2 – this is the composition of M1 and M2. More formally, we want a FST M that accepts the
relation {⟨u,w⟩ | ∃v s.t. ⟨u, v⟩ ∈ L(M1), ⟨v, w⟩ ∈ L(M2)}.

If you are familiar with intersection of FSAs, this construction is quite similar. The states ofM
are pairs of states from M1 and M2. For brevity, we write state ⟨q1, q2⟩ as q1q2. The start state is
s1s2, and the final states are F1×F2. Then, for each transition q1

a:b−−→ r1 inM1 and q2
b:c−−→ r2 inM2,

make a new transition q1q2
a:c−−→ r1r2. If the two old transitions have weights, the new transition

gets the product of their weights.
If we create duplicate transitions, you can either merge them while summing their weights, or

sometimes it’s more convenient to just leave them as duplicates.

CSE 40657/60657: Natural Language Processing Version of September 23, 2019

Chapter 6. Text Input 46

For example, the composition of our bigram language model and typo model is:

q0q0 q0q1

q1q1 q1q0

q2q2

r : r
r : e
ϵ : r
ϵ : e

r : ϵ

e
:
ϵ

e
: ee
: r

</s>
: </s>

r : r
r : e

e
:e

e
:r

</
s>

:
</

s>

r:
r

r:
e

e : e
e : r

</s>
: </s>

r : rr : e r:
ϵ

e : ϵ

e
:e

e
:r

ϵ
:
e

ϵ
:
r

</
s>

:
</

s>

(6.10)
This is our typo-correction model in the form of a FST. Now, how do we use it? Given a string

w of observed characters, construct an FSTMw that accepts only the string w as input and outputs
the same string.

q0 q1 q2 q3 q4
e : e e : e r : r </s> : </s>

(6.11)

Now, if we compose the model with Mw, we get a new FST that accepts as input all possible true
character sequences that could have given rise to w, and outputs only the string w. That FST looks

CSE 40657/60657: Natural Language Processing Version of September 23, 2019

Chapter 6. Text Input 47

like this:

q1q1q0 q0q0q0 q1q0q1 q0q1q0

q1q1q1 q0q0q1 q1q0q2 q0q1q1

q1q1q2 q0q0q2 q1q0q3 q0q1q2

q1q1q3 q0q0q3 q0q1q3

q2q2q4

e : e

r : e

e : e

r : e

e : r

r : r

</s>
: </s>

e : ϵ e : e
r : ϵ

ϵ
:
e,r

:
e

e : ϵ e : e
r : ϵ

ϵ
:
e,r

:
e

e : ϵ e : r
r : ϵ

ϵ
:
r,r

:
r

e : ϵ
r : ϵ

</s>
:</s>

e : ϵ

ϵ
:
e,e

:
e

r : ϵ

r :
e

e : ϵ

ϵ
:
r,e

:
r

r : ϵ
r :
r

e : ϵ

r : ϵ

</
s>

: <
/s

>

e : e
r : e

e : e
r : e

e : r
r : r

</s> : </s>

(6.12)
That looks very scary, but the good news is that the composition operation can be done com-

pletely automatically by a computer, so you will never have to construct one of these by hand,
unless you teach a course in natural language processing. One important thing to notice about this
transducer is that it is acyclic, and therefore there is only a finite (but large) number of possible
true strings. This is not guaranteed; if we had allowed unlimited deletions, then for any observed

CSE 40657/60657: Natural Language Processing Version of September 23, 2019

Chapter 6. Text Input 48

string w, there would be an infinite number of possible true strings. For example, if w = ee and we
allow just one deletion at each position, then eee, ree, ere, eer would be possible values of t, but if
we allow unlimited deletions, then eeee, eeeee, eeeee, eeeeee, . . . would also be possibilities.

But because the transducer is acyclic, we can run the Viterbi algorithm on it unmodified. This
will give us the path with the highest p(w | t), and by looking at just the input labels of that path,
we recover the best possible sequence of true characters t.

CSE 40657/60657: Natural Language Processing Version of September 23, 2019

