
Chapter 2

Language Models

2.1 Motivation: Machine Translation
To start the course, we’re going to look at the problem ofmachine translation, that

is, translating sentences from one language to another (traditionally, a French

sentence f to an English sentence e). A translation system has to try to do two

things at once: �rst, it has to generate an e that means the same thing as f (ad-
equacy), and second, it has to generate an e that is good English (�uency). We

could produce a perfectly adequate but not �uent translation by outpu�ing f it-

self; we could produce a perfectly �uent but not adequate translation by always

outpu�ing “My hovercra� is full of eels.” Doing both at once is what makes the

problem nontrivial.

Neural networks are rather good at combining two kinds of information like

this. But older machine learning methods were not as good at doing this, so they

divided the work between two submodels, in the following way. Warren Weaver

�rst proposed, in 1947, to treat translation as a decoding problem:

One naturally wonders if the problem of translation could conceiv-

ably be treated as a problem in cryptography. When I look at an

article in Russian, I say: ‘�is is really wri�en in English, but it has

been coded in some strange symbols. I will now proceed to decode.’

In other words, when a Russian speaker speaks Russian, he �rst thinks in En-

glish, but then, as he expresses his thoughts, they somehow become encoded in

Russian. �en (leaving aside how absurd this is), the task of translating a Rus-

sian sentence f is to recover the original English sentence e that the speaker was

thinking before he said it. Mathematically,

% (f, e) = % (e) % (f | e).
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�en, if we are given a sentence f , we can reconstruct e by �nding:

ê = arg max

e
% (e | f)

= arg max

e

% (e, f)
% (f)

= arg max

e
% (e, f)

= arg max

e
% (e) % (f | e).

So the model is divided into two parts. �e term % (f | e) is called the translation
model, which says how similar the two sentences are in meaning (adequacy). �e

term % (e) is the language model. It says what kinds of sentences are more likely

than others (�uency).

In this chapter, we will focus on the language model. With apologies, we’re

going to switch notation; since we’re leaving translation aside for the moment,

we don’t need to distinguish between languages, and we simply call the sentence

w = F1 · · ·F# , where eachF8 is a character, or a word, or something in between.

(How we cut up a sentence into segments depends on the application, but the

techniques are the same in any case.)

2.2 n-gram Models

2.2.1 Definition
�e simplest kind of language model is the=-gram language model, in which each

word depends on the (= − 1) previous words. In a 1-gram or unigram language

model, each word is generated independently:

% (F1 · · ·F# ) = ? (F1) · · · ? (F# ) ? (EOS). (2.1)

�e symbol EOS stands for “end of sentence,” and is needed in order to make the

probabilities of all sentences of all lengths sum to one. Imagine rolling a die with

one word wri�en on each face to generate random sentences; in order to know

when to stop rolling, you need (at least) one face of the die to say EOS which

means “stop rolling.”

In a bigram (2-gram) language model, each word’s probability depends on

the previous word:

% (F1 · · ·F# ) = ? (F1 | BOS)
(
#∏
8=2

? (F8 | F8−1)
)
? (EOS | F# ) . (2.2)

where we now also have a special symbol BOS for the beginning of the sentence,

because the �rst word doesn’t have a real previous word to condition on.

A general =-gram language model is:

% (F1 · · ·F# ) =
#+1∏
8=1

? (F8 | F8−=+1 · · ·F8−1), (2.3)

where we pretend thatF8 = BOS for 8 ≤ 0, andF#+1 = EOS.
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2.2.2 Training
Training an =-gram model is easy. To estimate the probabilities of a unigram

language model, just count the number of times each word occurs and divide it

by the total number of words:

? (F) = 2 (F)∑
F′
2 (F ′) .

And for general =-grams,

? (F | u) = 2 (DF)∑
F′
2 (uF ′)

where u ranges over (= − 1)-grams.

2.2.3 Smoothing
A never-ending challenge in all machine learning se�ings is the bias-variance
tradeo�, or the tradeo� between under��ing and over��ing. In language mod-

eling, under��ing usually means that the model probability of a word doesn’t

su�ciently take into account the context of the word. For example, a unigram

language model would think that “the the the” is a very good sentence. In the

world of =-gram language models, the antidote to under��ing is to increase =.

Over��ing usually means that the model overestimates the probability of

words or word sequences seen in data and underestimates the probability of

words or word sequences not seen in data. With =-gram language models, the

classic solution is smoothing, which tries to take some probability mass away

from seen =-grams and give it to unseen =-grams.

Recall that the unsmoothed probability estimate of an =-gram is

? (F | u) = 2 (uF)∑
F′
2 (uF ′) . (2.4)

�ere are basically two ways to take probability mass away: multiply the prob-

ability by _ < 1, or subtract 3 > 0 from the numerator. �en the probability

distribution doesn’t sum to one, so we add probability mass back proportional to

some other distribution ?̄ .

Multiplying: ? (F | u) = _ 2 (uF)∑
F′
2 (uF ′) + (1 − _)?̄ (F | u) (2.5)

Subtracting: ? (F | u) = max(0, 2 (uF) − 3)∑
F′
2 (uF ′) + U?̄ (F | u). (2.6)

where:

• _ and 3 must be chosen carefully; for much more information on how to

do that, see the technical report by Chen and Goodman (1998).
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• In (2.6), U is chosen to make the distribution sum to one.

• �e distribution ?̄ is typically simpler than ? . If ? is an=-gram model where

= > 1, then ?̄ is typically an (= − 1)-gram model. If ? is a unigram model,

then ?̄ is typically the uniform distribution over words.

A special case of (2.5) is simply to add 1 to the count of every =-gram, includ-

ing unseen =-grams.

? (F | u) = 2 (uF) + 1∑
F′
(2 (uF) + 1) , (2.7)

which is called add-one smoothing. (How is this a special case of (2.5)?) In many

situations (and particularly for language modeling), this is a terrible smoothing

method. But it’s good to know because it’s so easy.

2.3 Unknown Words
Natural languages probably don’t have a �nite vocabulary, and even if they do,

the distribution of word frequencies has such a long tail that, in any data outside

the training data, unknown or out-of-vocabulary (OOV) words are rather com-

mon. Unknown words are problematic for all language models, and we have a

few techniques for handling them.

2.3.1 Smoothing
Above, we saw that smoothing decreases probability estimates of seen =-grams

and increases probability estimates of unseen=-grams, including zero-probability

=-grams. If we add a pseudo-word UNK to our model’s vocabulary, it’ll have a

count of zero, but smoothing will give it a nonzero probability.

2.3.2 Limiting the vocabulary
A simpler method is to pretend that some word types seen in the training data

are unknown. For example, we might limit the vocabulary to 10,000 word types,

and all other word types are changed to UNK. Or, we might limit the vocabulary

just to those seen two or more times, and all other word types are changed to

UNK.

2.3.3 Subword segmentation
Another idea is to break words into smaller pieces, usually using a method like

byte pair encoding (Sennrich, Haddow, and Birch, 2016). �is breaks unknown

words down into smaller, known, pieces. However, this only alleviates the un-

known word problem; it does not solve it. So one of the above techniques is still

needed.
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2.4 Evaluation
Whenever we build any kind of model, we always have to think about how to

evaluate it.

2.4.1 Generating random sentences
One popular way of demonstrating a language model is using it to generate ran-

dom sentences. While this is entertaining and can give a qualitative sense of what

kinds of information a language model does and doesn’t capture, but it is not a

rigorous way to evaluate language models. Why? Imagine a language model that

just memorizes the sentences in the training data. �is model would randomly

generate perfectly-formed sentences. But if you gave it a sentence w not seen in

the training data, it would give w a probability of zero.

2.4.2 Extrinsic evaluation
�e best way to evaluate language models is extrinsically. Language models are

usually used as part of some larger system, so to compare two language models,

compare how much they help the larger system.

2.4.3 Perplexity
For intrinsic evaluation, the standard way to evaluate a language model is how

well it �ts some held-out data (that is, data that is di�erent from the training

data). �ere are various ways to measure this:

likelihood = % (F1 · · ·F# EOS) (2.8)

cross-entropy = − 1
#

log2 likelihood (2.9)

perplexity = 2cross-entropy
(2.10)

Perplexity is the standard metric. �e best (lowest) possible perplexity is 1, mean-

ing that the model always knows what the next word is. �e worst (highest) pos-

sible perplexity is the vocabulary size, meaning that if the model had to guess the

next word, it would be choosing randomly and uniformly from the vocabulary.

Held-out data is always going to have unknown words, which require some

special care. Above, we handled unknown words by mapping them to a special

token UNK, but if we compare two language models, they must map exactly the

same subset of word types to UNK. (If not, can you think of a way to cheat and

get a perplexity of 1?)

2.5 Weighted Automata
If you’ve taken �eory of Computing, you should be quite familiar with �nite au-

tomata; if not, you may be familiar with regular expressions, which are equiva-

lent to �nite automata. Many models in NLP can be thought of as �nite automata,

or variants of �nite automata, including =-gram language models. Although this
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may feel like overkill at �rst, we’ll soon see that formalizing models as �nite

automata makes it much easier to combine models in various ways.

2.5.1 Definitions
A �nite automaton (FA) is an imaginary machine that reads in a string and out-

puts an answer, either “accept” or “reject.” (For example, a FA could accept only

words in an English dictionary and reject all other strings.) At any given time,

the machine is in one state out of a �nite set of possible states. It has rules, called

transitions, that tell it how to move from one state to another.

A FA is typically represented by a directed graph. We draw nodes to represent

the various states that the machine can be in. �e node can be drawn with or

without the state’s name inside. �e machine starts in the initial state (or start
state), which we draw as:

�e edges of the graph represent transitions, for example:

@ A
0

which means that if the machine is in state @ and the next input symbol is 0, then

it can read in 0 and move to state A . �e machine also has zero or more �nal states
(or accept states), which we draw as:

If the machine can reach the end of the string while in a �nal state, then it accepts

the string. Otherwise, it rejects.

We say that a FA is deterministic (or a DFA) if every state has the property that,

for each label, there is exactly one outgoing transition with that label. Otherwise,

it is nondeterministic (or an NFA).

A weighted �nite automaton adds a weight to each transition. A transition on

symbol 0 with weight ? is wri�en

@ A
0 / ?

.

�e weight of a path through a weighted FA is the product of the weights of

the transitions along the path. A weighted FA de�nes a weighted language, or a

distribution over strings, in which the weight of a string is the sum of the weights

of all accepting paths of the string.

In a probabilistic FA, the weight of a string is a probability (that is, the weights

of all strings sum to one). To make this happen, we impose the following condi-

tions:

• Each state has the property that the weights of all of the outgoing transi-

tions sum to one.

• �ere is a special stop symbol, which we write as EOS, that we assume

appears at the end of every string, and only at the end of every string.
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2.5.2 Language models as automata
An =-gram language model is a probabilistic DFA with a very simple structure.

A bigram model with an alphabet Σ = {0, 1} looks like this:

@BOS

@0

@1

@EOS

0 / ?
(0 | B

OS)

1 / ? (1 | BOS)

0 / ? (0 | 0)

1
/
?(1
|
0)

0
/
?
(0
|1
)

1 / ? (1 | 1)

EOS / ? (EOS | BOS)

EOS / ? (EOS | 0)

EOS
/ ? (E

OS | 1
)

(2.11)

In general, we need a state for every observed context, that is, one for BOS, which

we call @BOS, and one for each word type 0, which we call @0 . And we need a �nal

state @EOS. For all 0, 1, there is a transition

@0 @1
1 / ? (1 | 0)

and for every state @0 , there is a transition

@0 @EOS
EOS / ? (EOS | 0)

.

Generalizing to =-grams, we need a state for every (= − 1)-gram. It would be

messy to actually draw the diagram, but we can describe how to construct it:

• For all u ∈ Σ=−1, there is a state @u.

• �e start state is @BOS=−1 .

• �e accept state is @EOS.

• For all 0 ∈ Σ, u ∈ Σ=−2, 1 ∈ Σ, there’s a transition

@0u @u1
1 / ? (1 | 0u)

.

• For all u ∈ Σ=−1, there’s a transition

@u @EOS
EOS / ? (EOS | u)

.

One can imagine designing other kinds of language models as well. For ex-

ample, a trie is o�en used for storing lists like dictionaries:
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@0

@a

a

@b

b

@aa

a

· · ·

@ab

b · · ·

...

@ba

a · · ·

@bb

b

· · ·

...

...

�e portion shown accepts the strings {a, aa, ab, ba}.
Here’s an example of a probabilistic NFA, known as a hidden Markov model

(HMM).

@BOS

@1

@2

@EOS

0
/ ?
(1, 0
| BO

S)

1
/ ?
(1,1
| BO

S)

0 / ? (2, 0 | BOS)

1 / ? (2,1 | BOS)

0
/
?(2

,0
|
1)

1
/
?(2

,1
|
1)

0 / ? (1, 0 | 1)
1 / ? (1,1 | 1)

0
/
?
(1
,0
| 2
)

1
/
?
(1
,1
| 2
)

0 / ? (EOS, 0 | 1)

1 / ? (EOS, 1 | 1)

0
/ ?
(EO

S,
0
| 2)

1
/ ?
(EO

S,
1
| 2)

0 / ? (2, 0 | 2)
1 / ? (2,1 | 2)

where each transition probability is de�ned in terms of two smaller steps:

? (A, 0 | @) = C (A | @) > (0 | A ). (2.12)

Notice how a single string can have multiple accepting paths. For example, if

the input symbols are English, then we could set the transition probabilities so

that the NFA goes to @1 when reading a noun and @2 when reading a verb (and

we could create more states for more parts of speech). In the sentence “I saw her

duck,” the word “duck” could be either a noun or a verb, so it would be appropriate

for the NFA to have more than one path that accepts this sentence.

2.5.3 Training
If we are given a collection of stringsD and a DFA" , we can learn weights very

easily. For each stringF ∈ D (which we assume to end in EOS), run " onF and
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count, for each state @ and each word 0 ∈ Σ∪ {EOS}, the number of times 2 (@, 0)
that " is in state @ and reads an 0. �en the weight of transition @ A

0
is

2 (@,0)∑
0′
2 (@,0′) . �is is the weighting of " that maximizes the likelihood of D.

If the automaton is not deterministic, the above won’t work. �is is because,

for a given string, there might be more than one path that accepts it, and we don’t

know which path’s transitions to count.

In other words, we want to maximize the log-likelihood,

! = log

∏
F∈D

% (F)

= log

∏
F∈D

∑
paths c for F

% (c)

= log

∏
F∈D

∑
paths for F

∏
transitions in path

(weight of path).

�at summation looks intractable, but in fact we can compute it e�ciently

using dynamic programming. Let U [D, @] be the total weight of all paths from the

start state @0 to state @ that the NFA can take while reading D. We can compute

this recursively like so:

U [n, @] =
{
1 @ = @0

0 otherwise

(2.13)

U [D0, A ] =
∑
@∈&

U [D, @] · weight

(
@ A

0
)
. (2.14)

�en the total weight of all accepting paths for F is

∑
@∈� U [F,@]. So we now

have

! = log

∏
F∈D

∑
@∈�

U [F,@] .

Unfortunately, we can’t maximize this by (say) se�ing its derivative to zero and

solving for the transition weights. Instead, we must use some kind of iterative

approximation.

One way to do this is called expectation-maximization, the traditional way to

train an HMM. �e other way is to use gradient-based optimization, which we’ll

cover later when we talk about neural networks (Section 2.6.4).

2.6 Recurrent Neural Networks
For a long time, researchers tried to �nd language models that were be�er than

=-gram models and failed, but in recent years, neural networks have become

powerful enough to retire =-grams at last. One way of de�ning a language model

as a neural network is as a recurrent neural network (RNN).
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2.6.1 From finite automata. . .
Let’s start with a bigram language model, "bigram. Recall that there are states

@BOS and @EOS, and a state @0 for every 0 ∈ Σ. To keep the diagram simple, we

show what the transitions look like for two symbols 0, 1 ∈ Σ, and we disallow

the empty string.

@BOS

@0

@1

@EOS

0

1

0

10

1

EOS

EOS

(2.15)

In contrast to the bigram model, if you, a human, had to predict the next word

in a sentence, you might use information from further back in the string. For ex-

ample, if a sentence starts with a lowercase le�er, then it’s probably all lowercase

(even the proper names). To model this, we want every symbol to depend on the

�rst symbol:

@BOS

@0

@1

@EOS

0

1

0,1

0,1

EOS

EOS

(2.16)

How would we combine the bigram and look-at-�rst-symbol model? �e easy
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but wrong answer is to take their union:

@BOS @EOS

@0

@1

0

1

0

10

1

EOS

EOS

A0

A1

0

1

0,1

0,1

EOS

EOS

(2.17)

�e trouble with this is that the probability of a string under the combined model

is a weighted sum of the probability under the two original models. If one model

loves a string and the other model hates it, then the combined model loves it even

more – there’s no way for one to veto the other.

Another idea would be to intersect them. �e resulting model would simulate

both the original models at the same time, which would be very powerful, but

also very large: the number of states in the intersection is the product of the

number of states in the two original automata.

To get around this explosion in the number of states, we look back to the

original de�nition of �nite automata given by Kleene (1951). Under the de�nition

you are familiar with (Rabin and Sco�, 1959), an NFA can enter state A if there’s

at least one incoming transition to A that the NFA can take. More formally, let

exists

(
@ A

0
)
= 1 if there is a transition @ A

0
, and 0 otherwise. �en

the activation of state A a�er reading string D is

U [n, @] = I[@ = @0] (2.18)

U [D0, A ] = I

∑
@∈&

U [D, @] · exists

(
@ A

0
)
≥ 1

 (2.19)

where I[·] is 1 if the thing inside the square brackets is true; 0 otherwise. Compare

with equations (2.13–2.14).

Let’s generalize this rule by le�ing U [D0, A ] be an arbitrary Boolean-valued

function of theU [D, @] and 0. For example, in the NFA above (2.17), we can change
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Figure 2.1: �e sigmoid function is 0 for very negative values, 1 for very positive

values, and smooth in between.

the behavior of @EOS to

U [D0, @EOS] = I


∑
@∈{@0,@1 ,A0,A1 }

U [D, @] ≥ 2
 . (2.20)

Note that the threshold is 2 instead of 1. �is means that a string is now accepted

by the automaton i� it is accepted by both of the original automata. (�e au-

tomaton can never be in @0 and @1 at once, nor A0 and A1 .) So we get the power of

intersection without the huge number of states that intersection usually creates.

(Kleene’s more general de�nition does not increase the power of �nite au-

tomata at all in terms of the languages recognized. Any automaton under this

de�nition can be converted into an equivalent DFA, by a procedure very similar

to converting an NFA to a DFA.)

2.6.2 . . .to recurrent neural networks
Kleene’s de�nition was a generalization of the original neural networks, de�ned

by McCulloch and Pi�s (1943). In a McCulloch-Pi�s neural network, the behavior

of every state has a de�nition of the form

U [D0, A ] = I
[∑
@

�(@, A ) U [D, @] + �(0, A ) + 2 ≥ 0
]

(2.21)

where � and � can be any functions returning natural numbers, and 2 is any

natural number or −∞. In some ways this is not as powerful as NFAs (since there

is no direct dependence between @ and 0) and in some ways this is more powerful

(because we can do things similar to intersection).
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h(0)

y(0)

h(1)

y(1)

x(1)

h(2)

y(2)

x(2)

h(3)

y(3)

x(3)

Figure 2.2: A simple RNN, shown for a string of length 3. Each rectangle is a

vector that is either input to or computed by the network.

A so-called simple (or Elman) RNN makes a McCulloch-Pi�s neural network

continuous-valued, which makes them much easier to learn. �e U ’s can be not

only 0 or 1, but any real number in between. And the step function, I ↦→ I[I ≥ 0],
is replaced with the sigmoid function,

sigmoid(I) = 1

1 + exp(−I)

which is a smooth version of the step function (see Figure 2.1).

RNNs nowadays are de�ned as a system of matrix equations. So let’s now

switch to this more standard notation. Number the symbols of the alphabet, start-

ing from 1. �e ordering is completely arbitrary. For example, if the alphabet is

{a, b, EOS}, we could number them: a = 1, b = 2, EOS = 3. From now on, we will

use a symbol and its number interchangeably.

See Figure 2.3 for a picture of an RNN. If the input string is F = F1 · · ·F=
andF=+1 = EOS, de�ne a sequence of vectors x(1) , . . . , x(=) . (�e superscripts are

wri�en with parentheses to make it clear that this isn’t exponentiation.) Each

vector x(8) encodesF8 as a one-hot vector, which means that x(8) is a vector with

all 0’s except for a 1 at positionF8 . For example, ifF = aba, then the input vectors

would be

x(1) =

1

0

0

 x(2) =

0

1

0

 x(3) =

1

0

0

 x(4) =

0

0

1


From these vectors, the RNN computes a sequence of vectors, which we previ-

ously called U :

h(8) = sigmoid(Ah(8−1) + Bx(8) + c) 8 = 1, . . . , = (2.22)

where

h(0) ∈ R3 (2.23)

A ∈ R3×3 (2.24)

B ∈ R3×|Σ | (2.25)

c ∈ R3 (2.26)
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are parameters of the model. �ey don’t have a de�nition or an intuitive inter-

pretation (like probabilities do); they will be learned during the training process,

as described in Section 2.6.4.

At any point in time 8 = 1, . . . , =, the RNN can make a prediction about the

next symbol:

y(8) = so�max(Dh(8) + e) (2.27)

% (F8+1 | F1 · · ·F8 ) ≈ y(8)F8+1 (2.28)

where

D ∈ R |Σ |×3 (2.29)

e ∈ R |Σ | (2.30)

are more parameters of the model. See Section 1.4.2 for a de�nition of the so�max

function. For example, if

y(1) =

0.6

0.2

0.4

 ,
that means

% (F2 = a | BOS) = 0.6
% (F2 = b | BOS) = 0.2

% (F2 = EOS | BOS) = 0.4.

2.6.3 Example
Figure 2.3 shows a run of a simple RNN with 30 hidden units trained on the Wall

Street Journal portion of the Penn Treebank, a common toy dataset for neural

language models. When we run this model on a new sentence, we can visualize

what each of its hidden units is doing at each time step. �e units have been

sorted by how rapidly they change.

�e �rst unit seems to be unchanging; maybe it’s useful for other units to

compute their values. �e second unit is blue on the start symbol, then becomes

deeper and deeper red as the end of the sentence approaches. �is unit seems

to be measuring the position in the sentence and/or trying to predict the end of

the sentence. �e third unit is red for the �rst part of the sentence, usually the

subject, and turns blue for the second part, usually the predicate. �e rest of the

units are unfortunately di�cult to interpret. But we can see that the model is

learning something about the large-scale structure of a sentence, without being

explicitly told anything about sentence structure.

Other kinds of RNNs that perform be�er than this simple RNN have been

shown to have units that perform various functions (Karpathy, Johnson, and Fei-

Fei, 2016).
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Figure 2.3: Visualization of a simple RNN language model on English text.
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2.6.4 Training
We are given a set of training examples, each of which can be converted into

a sequence of vectors, x(1) , . . . , x(=) , and x(=) = EOS. We write x for the whole

sequence of vectors.

We write ) for the collection of all the parameters of the model, �a�ened into

a single vector: ) = (h(0) ,A,B, c,D, e). For each training example and each time

step 8 , the RNN predicts the probability of word 8 + 1 as a vector y(8) , which we

now write as y(8) (x(1,...,8) , ) ) to make its dependence on x and ) explicit.

During training, our goal is to �nd the parameter values that maximize the

log-likelihood,
1

!() ) = log

∏
x∈data

% (x(1) · · · x(=+1) ;) ) (2.31)

=
∑

x∈data

log % (x(1) · · · x(=+1) ;) ) (2.32)

=
∑

x∈data

=∑
8=0

x(8+1) · log y(8) (x(1,...,8) , ) ) (2.33)

where the log is elementwise and · is a vector dot product (inner product). Since

each x(8) is a one-hot vector, do�ing it with another vector selects a single com-

ponent from that other vector, which in this case is the log-probability of the 8th

word.

To maximize this function, there are lots of di�erent methods. We’re going to

look at the easiest (but still very practical) method, stochastic gradient ascent.2 It

is also known as the method of steepest ascent. Imagine that the log-likelihood

is an in�nite, many-dimensional surface. Each point on the surface corresponds

to a se�ing of the \ ’s, and the altitude of the point is the log-likelihood for that

se�ing of the \ ’s. We want to �nd the highest point on the surface. We start at

an arbitrary location and then repeatedly move a li�le bit in the steepest uphill

direction.

In pseudocode, gradient ascent looks like this:

initialize parameters ) randomly

repeat
) ← ) + [ m

m)
!() )

until done

�e randomness of the initialization is important, because there are many situ-

ations where if two parameters are initialized to the same value, they’ll always

have the same value and therefore be redundant.

�e function
m
m) ! is the gradient of ! and gives the direction, at ) , that goes

uphill the steepest. �ese days, it’s uncommon to need to �gure out what the gra-

dient is by hand, because there are numerous automatic di�erentiation packages

that do this for you.

1
Since “likelihood,” “log-likelihood,” and “loss function” all start with L, it’s common to write !

for all three. Here, it stands for “log-likelihood.”

2
If we’re minimizing a function, then we use stochastic gradient descent, and this is the name that

the method is more commonly known by.
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�e learning rate [ > 0 controls how far we move at each step. (What happens

if [ is too small? too big?) To guarantee convergence, [ should decrease over time

(for example,[ = 1/C ), but it’s also common in practice to leave it �xed. See below

for another common trick.

In stochastic gradient ascent, we work on just one sentence at a time. Let

!(x, ) ) be the log-likelihood of just one sentence, that is,

!(x, ) ) =
=∑
8=0

x(8+1) · log y(8) (x(1,...,8) , ) ).

It could be thought of as an approximation to the full log-likelihood !() ). �en

stochastic gradient ascent goes like this:

initialize parameters ) to random numbers

repeat
for each sentence x do

) ← ) + [ m

m)
!(x, ) )

end for
until done

Each pass through the training data is called an epoch. �is method has two ad-

vantages and one disadvantage compared to full gradient ascent:

+ Computing the gradient for one sentence uses much less memory.

+ Updating the model a�er every sentence instead of waiting until the end

of the data means that the model can get be�er faster.

− Because the per-sentence log-likelihoods are only an approximation to the

full log-likelihood, the updates can temporarily take us in the wrong di-

rection.

�e next section talks about one way to mitigate this disadvantage.

2.6.5 Tricks
�ere are a number of tricks that are important for training well. �is is not a

complete list, but these are the most essential and/or easiest tricks.

Validation. �e above pseudocode doesn’t specify how to choose the learning

rate [ or when to stop. �ere are many ways to do this, but one tried-and-true

method is to look at the score (likelihood or some other metric) on held-out data

(also known as development or validation data). At the end of each epoch, run on

the validation data and compute the score. If it got worse, multiply the learning

rate by
1
2

and continue. Usually, the validation score will start to go up again.

If the learning rate goes below some threshold (say, a�er a certain number of

halvings), stop training.

Shu�ling. Because stochastic gradient ascent updates the model based on one

sentence at a time, it will have a natural tendency to remember the recent sen-

tences most. To mitigate this e�ect, before each epoch, randomly shu�e the order

of the training sentences or minibatches.
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Minibatching. To speed up training and/or to reduce random variations be-

tween sentences, it’s standard to train on a small number (10–1000) of sentences

at a time instead of a single sentence at a time. If we can process the sentences

in one minibatch in parallel, we get a huge speedup. For example, if the model

contains the matrix-vector product Ah where A is a parameter matrix and h
is a vector that depends on the input sentence, then with minibatching, h be-

comes a matrix (one row for each sentence), and Ah can become a matrix-matrix

product, which is much faster than a bunch of matrix-vector products. You just

have to make sure that the indices match up correctly: hA> or in PyTorch, A @

h[:, :,None].
However, a major nuisance is that the sentences are all di�erent lengths. �e

typical solution goes like this:

• Sort all the sentences by length.

• Divide up the sentences into minibatches. Because of the sorting, each

minibatch contains sentences with similar lengths.

• In each minibatch, equalize the lengths of sentences by appending a special

symbol PAD.

• When computing !, mask out the PAD symbols to avoid biasing the model

towards predicting PAD (not to mention wasting training time).

Gradient clipping. When using SGA on RNNs, a common problem is known as

the vanishing gradient problem and its evil twin, the exploding gradient problem.

What happens is that ! is a a very long chain of functions (= times a constant).

When we di�erentiate !, then by the chain rule, the partial derivatives are prod-

ucts of the partial derivatives of the functions in the chain. Suppose these partial

derivatives are small numbers (less than 1). �en the product of many of them

will be a vanishingly small number, and the gradient update will not have very

much e�ect. Or, suppose these partial derivatives are large numbers (greater than

1). �en the product of many of them will explode into a very large number, and

the gradient update will be very damaging. �is is de�nitely the more serious

problem, and preventing it is important. �ere are fancier learning methods than

SGA that alleviate this problem (currently, the most popular is probably Adam),

but for SGA, the simplest �x is gradient clipping: just check if the norm of the

gradient is bigger than 5, and if so, scale it so that its norm is just 5.
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