
Chapter 6

Semantics

When we began our study of syntax, I had to spend some time convincing you

that syntax exists (that is, that there is some kind of representation of syntactic

structure in your mind when you use language), but the basic shape of those

representations has not been all that controversial.

By contrast, as we turn our a�ention to semantics, or meaning, I probably

don’t need to convince you at all that meaning exists, but in theories of semantics

and computational approaches to semantics, representations of meaning come

in all kinds of shapes and sizes. As I see it, there are three main approaches to

representing meaning in NLP:

1. Vectors: whose components are features, either designed by humans or

automatically learned.

2. Graphs: in which nodes are usually entities and edges are various kinds of

relationships among them.

3. Logic: formulas of logics of various kinds, or SQL queries, or even computer

programs.

We should also distinguish between meanings of words, known as lexical
semantics, and the meanings of sentences, which is usually just called semantics.

6.1 Vectors
Possibly the simplest way to represent the “meaning” of a text is to assume that

each word in the text contributes a li�le bit of meaning, which we can represent

as a one-hot vector, and that we can combine the “meanings” of words simply by

adding up their vectors.

the cat sat on the mat→ {cat : 1,mat : 1, on : 1, sat : 1, the : 2}

In information retrieval, this is called a term vector, but in NLP it’s more com-

monly known as a bag of words. �is representation completely ignores any se-

mantic relationships between words (like synonymy) and any kind of structure

of the text (like word order or syntax). Yet, in many situations, it can be very

e�ective.

81

Chapter 6. Semantics 82

6.1.1 Classification
To get started, it’s convenient to focus on the problem of text classi�cation. Sup-

pose we have a collection of documents in di�erent classes, and we want to learn

to classify new documents. For example:

• We have a collection of e-mails that are labeled either as “spam” or “ham”

and we want to learn to classify new e-mails.

• We have some texts whose author is known (e.g., Alexander Hamilton,

James Madison, and John Jay) and want to classify anonymous texts (the

Federalist Papers).

• We have a database of product reviews together with star ratings, and we

want to be able to predict star ratings based on reviews alone.

• We have samples of (transcribed) speech from children diagnosed as autis-

tic or not autistic, and we want to automatically diagnose other children

using their speech.

�estion 14. What are some other possible applications?

We’ll continue working with the example of spam �ltering, but just remember

that this is only one of many possible applications. �is is a fairly easy problem,

but occasionally di�cult even for humans. For example:

From: fas@nsf.gov

Subject: Payment

To: chiang@isi.edu

DFM has approved your requested payment and has asked the U.S. Treasury to

issue a payment to you within the next 4 working days. This payment is

being sent directly to the Bank or Financial Institution identified by

you for this purpose. If you are an NSF employee, this payment is being

sent directly to the bank/financial institution where your bi-weekly pay

is being deposited.

This payment for 560.00 is 1099 reportable if it totals $600 or more

for the year (i.e. You will receive an IRS 1099-Misc form from

NSF)P131318.

Head, Accounts Payable Section.

More formally, we are given documents 31, . . . , 3= together with their correct

classes :1, . . . , := . We want to learn a model % (: | 3), where : is a class and 3 is

a document, and given a new document 3 , we want to be able to �nd, with high

accuracy,

:∗ = arg max

:

% (: | 3). (6.1)

Näıve Bayes

Instead of thinking about how to classify a document, let’s think about how the

document came to be. First, someone decided to write an e-mail; he was either a

CSE 40657/60657: Natural Language Processing Version of April 19, 2021

Chapter 6. Semantics 83

spammer or a “hammer.” �en, this person authored a document:

arg max

:

% (: | 3) = arg max

:

% (3)% (: | 3) (6.2)

= arg max

:

% (:,3) (6.3)

= arg max

:

% (:)% (3 | :). (6.4)

As we’ve seen in other situations, the advantage of thinking about it backwards

like this is that it is much easier to write down a model for % (3 | :) than for

% (: | 3).
�e simplest way to de�ne % (:) and % (3 | :) is using categorical distribution

and a unigram language model, respectively. �e result is called a naı̈ve Bayes
classi�er:

% (:,3) = ? (:)
∏
F∈3

? (F | :), (6.5)

where the ? (:) and ? (F | :) are the parameters of the model. (I’m using up-

percase % for all kinds of probabilities, but lowercase ? speci�cally for model

parameters that are to be learned.)

Naı̈ve Bayes is called naı̈ve because it naı̈vely assumes that all the words in

a document are independent of each other. All it captures is that spammers are

more likely to use certain words and hammers are more likely to use certain

words.

Training the model, or estimating the parameters ? (:) and ? (F | :), is easy.

It’s just:

? (:) = 2 (:)∑
: 2 (:)

? (F | :) = 2 (:,F)∑
F′ 2 (:,F ′)

.

(6.6)

Once we’ve trained the model, �nding the most probable class of a new document

is also easy:

:∗ = arg max

:

% (: | 3) (6.7)

= arg max

:

% (:,3) (6.8)

= arg max

:

? (:)
∏
F∈3

? (F | :). (6.9)

A classic dataset for text classi�cation is Pang and Lee’s dataset of movie

reviews.
1

Here are some example sentences from positive reviews:

the rock is destined to be the 21st century’s new " conan " and that

he’s going to make a splash even greater than arnold schwarzenegger ,

jean-claud van damme or steven segal .

the gorgeously elaborate continuation of " the lord of the rings "

trilogy is so huge that a column of words cannot adequately describe

1http://www.cs.cornell.edu/people/pabo/movie-review-data/

CSE 40657/60657: Natural Language Processing Version of April 19, 2021

http://www.cs.cornell.edu/people/pabo/movie-review-data/

Chapter 6. Semantics 84

co-writer/director peter jackson’s expanded vision of j . r . r

. tolkien’s middle-earth .

effective but too-tepid biopic

And some example sentences from negative reviews:

simplistic , silly and tedious .

it’s so laddish and juvenile , only teenage boys could possibly find

it funny .

exploitative and largely devoid of the depth or sophistication that

would make watching such a graphic treatment of the crimes bearable .

When we run the naive Bayes classi�er on this data, we get an accuracy of

75.7%. Some of the model probabilities are shown in Figure 6.1. Some of them are

pre�y obvious (“bad” is usually a pre�y good indicator of a bad movie), but some

are more interesting, like “cinema” being associated with good movies.

Logistic regression

Another approach is to directly model % (: | 3). Given that we’ve developed

notation for neural networks already, the simplest way to write this is as a li�le

neural network:

x(8) ∈ R |Σ | one-hot vectors (8 = 1, . . . , =) (6.10)

d =
∑
8

x(8) document vector (6.11)

y = log so�max(Wd + b) W ∈ R2×|Σ |, b ∈ R2 (6.12)

log % (: | 3) = y: (6.13)

However, this formulation doesn’t make very clear how closely related to naive

Bayes this is. �e parameters W:,F correspond to ? (F | :) except that they are

not constrained to be probabilities, and the parameters b: correspond to ? (:).
On the movie-reviews dataset, this gets a test accuracy of 77.9%, and some of

the feature values (parameters of the So�maxLayer) are shown in Figure 6.2.

Neural text classification

�e above formulation does make it very easy to imagine how to extend the

model to a deeper neural network. We can add a word-embedding layer (using

� for the number of dimensions, since 3 stands for documents):

x(8) ∈ R |Σ | one-hot vectors (8 = 1, . . . , =) (6.14)

e(8) = Vx(8) V ∈ R�×|Σ | (6.15)

d =
∑
8

e(8) document vector (6.16)

y = log so�max(Wd + b) W ∈ R2×� , b ∈ R2 (6.17)

log % (: | 3) = y: (6.18)

CSE 40657/60657: Natural Language Processing Version of April 19, 2021

Chapter 6. Semantics 85

? (+) = 0.5
? (−) = 0.5

? (moving | +) = 0.000582
? (portrait | +) = 0.000463
? (touching | +) = 0.000404
? (powerful | +) = 0.000394

? (engrossing | +) = 0.000296
? (cinema | +) = 0.000611

? (beautiful | +) = 0.000404
? (culture | +) = 0.000374

? (enjoyable | +) = 0.000453
? (wonderful | +) = 0.000286

? (bad | −) = 0.001862
? (dull | −) = 0.000657

? (boring | −) = 0.000488
? (too | −) = 0.003285
? (�at | −) = 0.000328
? (tv | −) = 0.000388

? (worst | −) = 0.000458
? (unfunny | −) = 0.000258

? (jokes | −) = 0.000378
? (? | −) = 0.001473

Figure 6.1: Some of the probabilities of the naive Bayes classifer learned from

the movie review dataset. �e words shown above are not the most frequent

words; those are rather boring. Instead, we selected the words with the highest

? (F | :)/(? (F) + 10).

CSE 40657/60657: Natural Language Processing Version of April 19, 2021

Chapter 6. Semantics 86

b+ = −0.0582295576575
b− = 0.0582871175659

W+,engrossing = 0.489182061478

W+,wonderful = 0.476123720915

W+,enjoyable = 0.471651953627

W+,cinema = 0.459620146853

W+,unexpected = 0.453405446842

W+,powerful = 0.449412825023

W+,provides = 0.445648025943

W+,solid = 0.424138376044

W+,rare = 0.422520925496

W+,refreshing = 0.410572454316

W−,dull = 0.621595244267

W−,worst = 0.556222428753

W−,boring = 0.526661381249

W−,fails = 0.494008518961

W−,unfunny = 0.487500395879

W−,�at = 0.467475895425

W−,mess = 0.455630761843

W−,neither = 0.442770935893

W−,lack = 0.43677543437

W−,mediocre = 0.427000091059

Figure 6.2: Some of the feature weights learned by logistic regression.

CSE 40657/60657: Natural Language Processing Version of April 19, 2021

Chapter 6. Semantics 87

�e document vector continues to be the sum of the word vectors, which is a

simple and common scheme.

We can also add more layers between the embedding and the summation, like

RNNs or self-a�ention. With an RNN, an alternative to summing all the word

encodings would be simply to take the last hidden state of the RNN. With self-

a�ention, an alternative to summing would be to create a fake word CLS and

using the encoding of CLS.

6.1.2 Topic modeling
In the models of the previous section, we had vector representations of words,

and we formed vector representations of documents by summing the word vec-

tors. We also could have thought of the W:,: as vector representations of classes.

In this section, we return to the naive Bayes classi�er and modify it to obtain

a di�erent way to represent documents as vectors. �ese vectors are very widely

used in text analysis in the humanities and social sciences.

Näıve Bayes with topics

Recall that we modi�ed the logistic regression model by introducing a word em-

bedding layer. We can do the same thing to the naive Bayes classi�er by intro-

ducing a variable C (for topic):

% (:, 3) = ? (:)
∏
F∈3

∑
C

? (C | :)? (F | C). (6.19)

�e topic C is drawn from a �nite set of predetermined size � . We are given

training data consisting of documents 38 and classes :8 , but we are not given the

topics of the words in the 38 .

�e class distribution ? (:) is estimated by counting and dividing:

? (:) = 2 (:)∑
: 2 (:)

. (6.20)

�e rest of the model is not as simple because of the hidden variables. We want

to maximize the log-likelihood,

log! =
∑
8

(
log? (:8) +

∑
F∈38

log

∑
C

? (C | :8)? (F | C)
)
.

One way to do this is using stochastic gradient ascent, which we can do by using

the (by now) usual trick of expressing the probability distributions as so�maxes

of logit parameters.

? (C | :) = so�max _(C ′ | :) = exp B (:, C)∑
C ′ exp B (:, C ′)

? (F | C) = so�max _(F ′ | C) = exp B (C,F)∑
F′ exp B (C,F ′)

CSE 40657/60657: Natural Language Processing Version of April 19, 2021

Chapter 6. Semantics 88

We ran this model on the movie dataset, using 2 topics, 25 iterations, and add-

10−6 smoothing, and got an accuracy of 77.4%, which is a small improvement over

the original model (75.7%).

With 20 topics, here’s what the model learns:

topic words

0 stupid boring dull flat routine bad mess unfunny

fails neither

1 funny both drama us look performances romantic

entertaining world those

2 too lack bad silly title worst already ? mess

tedious

3 compelling ride fascinating both entertaining

works surprisingly heart family experience

4 made up through ’ all never out comes audience

than

5 worst too tries bad gross-out things ? title

premise tv

6 engrossing beautiful refreshingly terrific

portrait quiet riveting thoughtful moving

enjoyable

7 poorly dull loud bad flat boring jokes generic

numbers badly

8 long just isn’t where when be doesn’t plot movie

or

9 de drama film love with your and their you life

10 who often story their picture cast and funny

movies you

11 that’s up quite as lot for little which it’s out

12 remarkable quiet our relationships study moving

fascinating culture performances powerful

13 compelling smart performances personal family

portrait world intelligent different our

14 far can one but that in little , itself feel

15 unfunny flat boring bad mediocre dull plodding

tv product badly

16 many not never it into has time (from but

17 vividly lively provides touching warm wonderful

disturbing powerful engrossing riveting

18 film gives picture makes without you with at

first and

19 too bad title jokes fails feels problem nothing

silly tv

Many of the topics are clearly dominated by positive or negative words. �ere

are also seem to be some topics with neutral words (4, 8, 9, 10, 11, 14, 16, 18). It’s

hard to guess what might further di�erentiate the topics (if anything).

CSE 40657/60657: Natural Language Processing Version of April 19, 2021

Chapter 6. Semantics 89

Probabilistic LSA

�e topics above are colored by the choice of classes (positive versus negative

reviews); if we want the topics to be generic, we can put each document in its
own class. Intuitively, that’s like building a classi�er that, given a test document,

will choose the training document that it’s the most similar to. But the point here

is not classi�cation; what we’re interested in is the probabilities ? (C | :8), which

can be thought of as a vector representation of document38 , and the probabilities

? (C | F), which can be thought of as a vector representation of word F . �is is

called probabilistic latent semantic analysis (PLSA) or probabilistic latent semantic
indexing (PLSI) (Hofmann, 1999).

We ran PLSA using the same se�ings as before, but for more iterations. �is

time, the topics we got were:

CSE 40657/60657: Natural Language Processing Version of April 19, 2021

Chapter 6. Semantics 90

topic words

0 made last since fans once passion again perfect

cinema animated

1 ? don’t man video stuff satisfying problem

what’s how why

2 far journey summer getting job surprises

surprise water setting crush

3 works worth genre idea seeing cliches already

appeal add female

4 documentary heart mind fascinating do difficult

satire strong light filmmakers

5 her romantic truly formula girl start delightful

major puts play

6 there’s those lot women enjoy need beautiful

close something real

7 your you’ll flat deep throughout murder

forgettable coming-of-age seriously [a]

8 " other ! comes year silly ending horror less

five

9 if fun because watch mr you’re beyond hilarious

sad witty

10 too quite moving place amusing visually human

somewhat important appealing

11 performance keep sometimes romance melodrama

compelling wrong wonderful strange straight

12 entertaining family comic mostly surprisingly

touching ride leaves brilliant quiet

13 de short hard psychological que falls y la ideas

o

14 bad study sort rarely gives entire modern fire

ugly awful

15 piece part fine beautifully humor pleasure

storytelling did usual solid

16 doesn’t care lacks power else yet work they rich

impossible

17 moments my thing dramatic neither nor mess there

funny career

18 i like feels me pretty still looks left long

worst

19 direction seem everyone opera help tedious soap

nature alone predictable

Note how di�erent these topics look from before. None are strongly positive or

negative, because the model is no longer receiving information about positivity

or negativity. But there doesn’t seem to be that much coherence in general in

these topics.

To get more interesting topics, I ran the same algorithm on 1000 posts from

Reddit’s r/notredame:

CSE 40657/60657: Natural Language Processing Version of April 19, 2021

Chapter 6. Semantics 91

topic words

0 ted insurance gsu liams representatives hesburgh

coronavirus aetna abroad pride

1 band grades fail p minecraft lizzy browns nfl

pass alma

2 updated colors recovered arms r 0 * :* fatality

parameters shields

3 engineering meet advice clubs friends club

summer lonely freshman join

4 returning william aug. practices services july

programs travel fall >

5 | he hr him trump manager pro barrett leader

court

6 winter links X whistle screwing pic break rise

wimbush stress

7 racism shirt expelled race color racist minority

scene hijab privilege

8 lsu jpw tcu table helmets meme shoulder ap turf

row

10 vaccination water dose vaccinated vaccine

conference receive hypocritical jenkins april

11 individuals · antigen cole • wellness diagnosed

tracing surveillance august

12 cough johnson gpa legacy pope usccb allergies

fear blame depression

13 cable tv computer tonelli phones flanner labs /u

cell phone

14 irish michigan congrats ♣ win fans season game

championship teams

15 renovations jerry parking halls residential

salad hoax car manti mike

16 tests total wifi yards numbers data fewer

companies gipp sample

17 negative tested ucc therapy test senate tracer

facts quarantine rapid

18 diversity rich diverse religion religious uva

catholic commencement racial pretentious

19 cafe mishawaka expensive food -will pizza pho

places sushi breakfast

Although there are some mixed topics, it’s pre�y easy to see what most topics

are about.

Latent Dirichlet Allocation

No one uses PLSA anymore. Latent Dirichlet Allocation (Blei, A. Y. Ng, and Jordan,

2003) is a further development of PLSA that is by far the most widely known and

used topic model. LDA is more math-heavy and we don’t give a full description

here, but just a li�le bit of the basic idea.

CSE 40657/60657: Natural Language Processing Version of April 19, 2021

Chapter 6. Semantics 92

Let’s forget about language for a li�le while and talk about coin �ips. Suppose

I �ip a coin and show it to you: it lands heads. �en I ask you to bet on whether

the second �ip will be heads or tails.

% (�2 | �1 = heads) = ? (6.21)

�ere are many possible answers; for example:

• Based on what I know about how coins work, % (�2 = heads) = 1
2
.

• Based on my observation, % (�2 = heads) = 2 (heads)
2 (heads)+2 (tails) = 1.

If we were doing maximum-likelihood estimation, as we have been doing all

semester, then the la�er would indeed be the right answer. But this is obviously

not a rational conclusion. To make sense out of this, we have to introduce the

idea of a prior distribution. Suppose for some reason (the real reason is I want to

avoid doing calculus) that we have just three hypotheses about the coin:

(HT) It’s a fair coin.

(HH) Both sides are heads.

(TT) Both sides are tails.

So we can write:

% (heads | HT) = 1
2

% (tails | HT) = 1
2

(6.22)

% (heads | HH) = 1 % (tails | HH) = 0 (6.23)

% (heads | TT) = 0 % (tails | TT) = 1 (6.24)

Before observing any coin �ips, you thought that these three hypotheses were

equally likely. �is is your prior probability.

% (HT) = % (HH) = % (TT) = 1
3
. (6.25)

Now, a�er observing a coin �ip, you think:

% (�2 = heads | �1 = heads) = % (�1 = heads,�2 = heads)
% (�1 = heads) (6.26)

=

∑
\=HT,HH,TT

% (�1 = heads,�2 = heads, \)∑
\=HT,HH,TT

% (�1 = heads, \) (6.27)

=

∑
\=HT,HH,TT

% (\) % (�1 = heads,�2 = heads | \)∑
\=HT,HH,TT

% (\) % (�1 = heads | \)

(6.28)

=

1
3
· 1
4
+ 1
3
· 1 + 1

3
· 0

1
3
· 1
2
+ 1
3
· 1 + 1

3
· 0

(6.29)

= 5
6
. (6.30)

CSE 40657/60657: Natural Language Processing Version of April 19, 2021

Chapter 6. Semantics 93

Now, imagine that we don’t have three discrete hypotheses, but in�nitely

many hypotheses, % (heads | \) = \ for any \ ∈ [0, 1]. �e sums over \ be-

come integrals, but the idea remains the same. Interestingly, if we continue with

a uniform prior distribution over \ ’s, we end up with add-one smoothing.

Back to PLSA, we have a model of classes, topics, and documents, and if we’re

only interested in the topics, and not \ , then we shouldn’t try to estimate \ .

Instead, we should integrate over all possible values of \ :

% (topics | data) = % (topics, data)
% (data) (6.31)

=

∫
% (topics, data, \) d\∫

% (data, \) d\
(6.32)

�at looks bad, and in all but the simplest cases, it is bad, but that doesn’t stop

people from trying to do it anyway. �ere are two main ways of approximat-

ing these integrals: one way tries to approximate a di�cult-to-integrate func-

tion with a simpler one (variational methods), and the other tries to use random

sampling (Monte Carlo methods). �e la�er generally work be�er. For further

information, see the references listed below.

6.2 Graphs
�e next broad category of semantic representation I want to talk about is se-

mantic graphs. I’m including under this heading a bunch of tasks like

• Named entity recognition: Which noun phrases are names of people, places,

etc., and what entity do they refer to?

• Coreference resolution: Which noun phrases (including pronouns) refer to

the same thing?

• Word sense disambiguation: If a word has more than one sense, which one

is being used in this context?

• Semantic role labeling: For each action in the sentence, who/what is the

agent (the one doing the action), the patient (the one upon whom the action

is done), etc.?

• Relation extraction: Sometimes we’re interested in higher-level relation-

ships between entities, like “G is the president of ~.”

Ultimately, the entities and relationships that these tasks �nd can be assembled

into a graph – either a graph that represents the meaning of a sentence, or a big

graph that represents the knowledge contained in a whole collection of text.

6.2.1 Named entity recognition
Among these more focused tasks, I’d like to focus on one, named entity recogni-

tion (NER), both because it’s especially useful in a lot of applications, and because

the standard method for NER is one that we haven’t seen before.

CSE 40657/60657: Natural Language Processing Version of April 19, 2021

Chapter 6. Semantics 94

Problem

�e NER problem is, given a string, which strings are named entities and what

kind of named entity they are. Typical types are:

• Person

• Organization

• Location (also called GPE or geopolitical entity)

• Miscellaneous

(�ese types are from the CoNLL 2003 shared task, the most widely used (and

probably overused) dataset for NER.)

A natural next step would be entity linking, which is to determine what per-

son, organization, location, in the real world a given substring refers to. (Com-

monly, the URL of an entity’s Wikipedia entry is used as a proxy for “the real

world.”)

BIO tagging

�e usual �rst step in NER is to reduce it to a sequence labeling problem, where we

have to assign a label to every word in a sequence. Other examples of sequence

labeling are part-of-speech tagging and slot-�lling (e.g., in ATIS, identifying the

departure/arrival airport/date/time).

To reduce NER (and slot-�lling) to a sequence-labeling problem, we use BIO
tagging:

B-ORG I-ORG O B-PER I-PER O O B-LOC O

United Nations o�cial Rolf Ekeus heads for Baghdad .

B stands for “begin” and is used for the �rst word in each entity; I stands for “in-

side” and is used for the second and subsequence words in each entity. O stands

for “outside” and is used for any word that does not belong to an entity. Other

schemes exist, like BILOU (L for the last word an entity, U ‘unit’ for the only

word in an entity), but this is the simplest and most common.

RNN-CRFs

An RNN-CRF (more o�en referred to in the literature as a biLSTM-CRF, where

a biLSTM is the speci�c kind of RNN used) is very similar to the neural parsing

model we saw in the last chapter. �e neural parsing model was an RNN encoder

with a weighted CFG on top; this model is an RNN encoder with a weighted �nite

automaton on top.

�e input is a string w = F1 · · ·F= . Let) be the set of possible tags. We start

o� with an RNN encoder, then a linear layer to get a score S8,C for each position

CSE 40657/60657: Natural Language Processing Version of April 19, 2021

Chapter 6. Semantics 95

8 ∈ [1, =] and each possible tag C :

V ∈ R=×3

V8 = Embedding
1 (F8) 8 = 1, . . . , = (6.33)

H ∈ R=×3

H = RNN
2 (V) (6.34)

S ∈ R=×|) |

S = LinearLayer
3 (H). (6.35)

In a language model, you’d expect something like a so�max to predict the

next word; in the neural parser, we had a “super-so�max” over trees. Here, we

want a “super-so�max” over all sequences of tags, t:

% (t | w) = exp B (t)∑
t′

exp B (t′) (6.36)

where the summation over t′ sums over all tag sequences of length =, and B (·) is

the score of a tag sequence:

B (t) =
=∑
8=1

(
B (C8−1, C8) + S8,C8

)
+ B (C=, EOS). (6.37)

where C0 = BOS. �is B (C8−1, C8) is reminiscent of a bigram (log-)probability, except

that it can be any positive or negative number.

As before, we’re now le� with two challenges: (1) During training, we need

to compute the sum

∑
t′ exp B (t′), and (2) during testing, we need to compute

arg maxt % (t | w). We solve both challenges with this �nite automaton (shown

for = = 3, |) | = 2):

e
x
p
(B (

BO
S,
1)
+ S 1

,1
)

e
x
p(B (BOS, 2) + S

1,2)

exp(B (1, 1) + S2,1)

e
x
p
(B (
2,
1)
+ S

2,
1
)

e
x
p(B (1, 2) + S

2,2)

exp(B (2, 2) + S2,2)

exp(B (1, 1) + S3,1)

e
x
p
(B (
2,
1)
+ S

3,
1
)

e
x
p(B (1, 2) + S

3,2)

exp(B (2, 2) + S3,2)

e
x
pB (1, EOS)

e
x
p
B (2

, E
OS
)

Each path through this automaton corresponds with a possible tag sequence t.
�e weight of this path is exp B (T). We saw a very long time ago how to compute

the total weight of all paths (eqs. 2.13–2.14); here it is in terms of the current

notation:

U1,C ′ = exp(B (BOS, C ′) + S1,C ′) (6.38)

U8,C ′ =
∑
C

U8,C exp(B (C, C ′) + S8,C ′) 8 = 2, . . . , = (6.39)

U=+1,EOS =
∑
C

U=,C exp B (C, EOS). (6.40)

CSE 40657/60657: Natural Language Processing Version of April 19, 2021

Chapter 6. Semantics 96

�en ∑
t

exp B (t) = U=+1,EOS. (6.41)

To �nd the best tag sequence t given a word sequence w, we do the same com-

putation, but everywhere there’s a sum, we do a max.

6.2.2 Semantic graphs
�e �rst part of this section is mostly from an earlier paper (Chiang et al., 2018).

Above we mentioned various semantics-related tasks like semantic role label-

ing (Gildea and Jurafsky, 2000), word sense disambiguation (Brown et al., 1991),

coreference resolution (Soon, H. T. Ng, and Lim, 2001), and so on. Resources like

OntoNotes (Hovy et al., 2006) provided separate resources for each of these tasks.

Some more recent work in semantic processing tries to consolidate these

tasks into one. For example, the Abstract Meaning Representation (AMR) Bank

(Banarescu et al., 2013) began as an e�ort to unify the various annotation layers

of OntoNotes. Others include: the Prague Dependency Treebank (Böhmová et al.,

2003), DeepBank (Oepen and Lønning, 2006), and Universal Conceptual Cogni-

tive Annotation (Abend and Rappoport, 2013). By and large, these resources are

based on, or equivalent to, graphs, in which vertices stand for entities and edges

stand for semantic relations among them.

Abstract Meaning Representations

Here, I’ll focus on AMRs, just because they’re the representation I’m most famil-

iar with. AMRs can be wri�en in a serialized form or as directed graphs. Examples

of these two representations, from the AMR Bank (LDC2014T12), are reported in

Figure 6.3 and Figure 6.4. Nodes are labeled, in order to convey lexical informa-

tion. Edges are labeled to convey information about semantic roles. Labels at the

edges need not be unique, meaning that edges impinging on the same node might

have the same label. Furthermore, our DAGs are not ordered, meaning that there

is no order relation for the edges impinging at a given node, as is usually the

case in standard graph structures. A node can appear in more than one place (for

example, in Figure 6.3, node s2 appears six times).

�e numbers (e.g., ask-01) require some explanation. �ese are from Prop-

Bank (Palmer, Gildea, and Kingsbury, 2005), which catalogues and numbers, for

each verb, the di�erent senses of the verb and ways it can be used. For example,

• ask-01 is for asking questions

• ask-02 is for asking favors

• ask-03 is for asking a price

• ask out-04 is for asking someone on a date.

Each of these senses comes with a numbered list of arguments. For example, for

ask-01,

CSE 40657/60657: Natural Language Processing Version of April 19, 2021

Chapter 6. Semantics 97

(a / and

:op1 (a2 / ask-01

:ARG0 (i / i)

:ARG1 (t / thing

:ARG1-of (t2 / think-01

:ARG0 (s2 / she)

:ARG2 (l / location

:location-of (w / we))))

:ARG2 s2)

:op2 (s / say-01

:ARG0 s2

:ARG1 (a3 / and

:op1 (w2 / want-01 :polarity -

:ARG0 s2

:ARG1 (t3 / think-01

:ARG0 s2

:ARG1 l))

:op2 (r / recommend-01

:ARG0 s2

:ARG1 (c / content-01

:ARG1 i

:ARG2 (e / experience-01

:ARG0 w))

:ARG2 i))

:ARG2 i)

:op3 c)

Figure 6.3: Example AMR in its standard format, number

DF-200-192403-625 0111.7 from the AMR Bank. �e sentence is: “I

asked her what she thought about where we’d be and she said she doesn’t want

to think about that, and that I should be happy about the experiences we’ve had

(which I am).”

• arg0 is the asker

• arg1 is the question

• arg2 is the hearer.

AMR parsing

Semantic parsing is the task of taking a natural language sentence and mapping

it to a representation of its meaning. If the semantic representation is AMR, we

call this AMR parsing.

�ese days, it’s easy to build a barebones AMR parser – just run a neural

machine translation system on parallel text consisting of English sentences and

their AMRs in textual format (Figure 6.3). Research on AMR parsing has go�en

CSE 40657/60657: Natural Language Processing Version of April 19, 2021

Chapter 6. Semantics 98

a / and

a2 / ask-01

op1

s / say-01

op2

c / content-01

op3

i / i

ARG0

t / thing

ARG1

s2 / she

ARG2

ARG2ARG0

a3 / and

ARG1

ARG1

e / experience-01

ARG2

w2 / want-01

op1

r / recommend-01

op2

ARG0 -

polarity

t3 / think-01

ARG1 ARG1

ARG2ARG0

ARG0

l / location

ARG1

w / we

ARG0

location

t2 / think-01

ARG1ARG0

ARG2

Figure 6.4: �e AMR of Figure 6.3, presented as a directed graph.

plenty more sophisticated than that, but here I want to focus on one improvement

to the basic NMT system (which you will implement in HW4).

Unlike language-to-language translation, it’s typical for the AMR to have

words in common with the source text. �e NMT system can do a good job learn-

ing to copy these words if they’re frequent, but for rare words, it may do so less

reliably, and for unknown words, it will be unable to. So we want to add a copy
mechanism to the model.

�e basic idea is to introduce a fake target word, COPY, which instructs the

system to copy a word from the source sentence. Which word? We use the source-

to-target a�ention, which is a distribution over source positions, to choose one

source word.

We’re only interested in the last two steps of the model, which were the same

in our presentation of both the RNN and Transformer models. �ese are for the

context vector c(8) , and the output word distribution:

g(8) ∈ R3

H ∈ R=×3

o(8) ∈ R3

c(8) ∈ R3

c(8) = A�ention(g(8) ,H,H) (6.42)

% (48+1) = So�maxLayer
6 (o(8)). (6.43)

�e equation for c(8) computes both the a�ention and the weighted average,

CSE 40657/60657: Natural Language Processing Version of April 19, 2021

Chapter 6. Semantics 99

so we’re going to “break it open” to get at the a�ention inside:

U (8) ∈ R= (6.44)

U (8) = so�maxHg(8) (6.45)

�e output word distribution now includes COPY. We modify this to:

p(8) ∈ R= (6.46)

p(8) = So�maxLayer
6 (o(8)) (6.47)

% (4) = p(8)4 + p(8)COPY
∑

9=1,...,=
59=4

U
(8)
9
. (6.48)

�is means that there are one or more ways of choosing word 4: �rst, we could

choose it directly from the output distribution o(8) , or, for each source word 59

that is equal to 4 , we could copy word 59 with probability p(8)COPYU 9 .
Note that

• U (8) and p(8) are both vectors of probabilities, not log-probabilities.

• �e test 59 = 4 compares the words as words, not as numbers.

6.3 Logic
�e last category of semantic representations is that of logical formulas, under-

stood broadly to include not only logics like �rst-order logic, but languages like

SQL or even programming languages.

In these notes, I’d like to focus on a traditional approach to semantics called

Montague grammar.

6.3.1 Logical forms
We start with a very simple example:

(6.49) a. John sees Mary.

b. see(John,Mary).

Entities are represented by constants or variables, and events are represented by

predicates.

A variation (called neo-Davidsonian semantics) represents events by vari-

ables, too:

(6.50) a. John sees Mary.

b. ∃4.see(4) ∧ agent(4, John) ∧ theme(4,Mary).

�is is quite similar to AMR. But let’s stick with events as predicates.

A key way that logical semantics di�ers from graph representations like AMR

is in handling of quanti�ers.

CSE 40657/60657: Natural Language Processing Version of April 19, 2021

Chapter 6. Semantics 100

(6.51) a. John sees a girl.

b. ∃6.girl(6) ∧ see(John, 6).

(6.52) a. A boy sees Mary.

b. ∃1.boy(1) ∧ see(1,Mary).

6.3.2 Compositionality
How do we compute these representations? We want to follow the principle of

compositionality, that the meaning of any expression is computed from the mean-

ing of its subexpressions. In other words, we want to write a recursive function

that processes a syntax tree bo�om-up, something like

function semantics(root)

if root = S and root.children = (NP,VP) then
B1 ← semantics(root.children[1])
B2 ← semantics(root.children[2])
build B from B1 and B2
return B

else. . .
end if

end function
So we want to associate with each context-free grammar rule (e.g., S →

NP VP) a li�le function that build the semantics of S from the semantics of NP

and VP. To do that, it will be convenient to have some new notation for writing

li�le functions.

6.3.3 Lambda calculus
A _-expression (lambda-expression) is a self-contained way of writing a function.

Many programming languages now have them:

_-calculus _G.G · G
Scheme/Lisp (lambda (x) (* x x))

Python lambda x: x * x

C++ [](float x) { return x * x; }

In _-calculus, the application of a function 5 to an expression 4 is simply wri�en

as 5 4 . So

(_G .G · G)10 −→ 10 · 10 = 100.

Lambda expressions can do a lot of things you might not expect them to be

able to do at �rst; here, I want to mention just one. Traditionally, _-expressions

take exactly one argument. But you can e�ectively write a function of two argu-

CSE 40657/60657: Natural Language Processing Version of April 19, 2021

Chapter 6. Semantics 101

ments as a function that returns another function, like this:

5 = _G._~.
√
G2 + ~2 (6.53)

5 3 4 = (_G ._~.
√
G2 + ~2) 3 4 (6.54)

−→ (_~.
√
32 + ~2) 4 (6.55)

−→
√
32 + 42 (6.56)

= 5. (6.57)

�is is called currying a�er Haskell Curry, who had nothing to do with it.

6.3.4 Examples
Here’s a very simple CFG, each of whose rules is associated with a function that

computes the semantics of the le�-hand side (that is, the parent) in terms of the

semantics of the right-hand side (that is, the children):

S→ NP VP _G._% .%G

NP→ John John
NP→ Mary Mary
VP→ IV _% .%

IV→ stands _G.stand(G)

S

VP

IV

stands

NP

John

stand(John)

_G .stand(G)

_G .stand(G)

John

S→ NP VP _G._% .%G

NP→ John John
NP→ Mary Mary
VP→ IV _% .%

VP→ TV NP _% ._~._G .% (G,~)
IV→ stands _G .stand(G)

TV→ sees _G ._~.see(G,~)

CSE 40657/60657: Natural Language Processing Version of April 19, 2021

Chapter 6. Semantics 102

S

VP

NP

Mary

TV

sees

NP

John

see(John,Mary)

_G.see(G,Mary)

Mary_G ._~.see(G,~)

John

When we try to get examples like (6.51–6.52), however, problems arise. �e

meaning of “a” should be ∃, but how do we get this quanti�er to appear on the

very outside of the formula? �e solution is to �ip everything around so that

the semantics for “a boy” should not just be a formula representing a boy; it

should be a function that takes a predicate % about boys and returns the formula

∃1.boy(1) ∧ % (1).

S→ NP VP _5 ._% .5 %

NP→ John _% .% (John)
NP→ Mary _% .% (Mary)
NP→ a boy _% .(∃1.boy(1) ∧ %1)
NP→ a girl _% .(∃6.girl(6) ∧ %6)
VP→ TV NP _% ._5 ._G .5 (_~.%G~)
TV→ sees _G._~.see(G,~)

S

VP

NP

girla

TV

sees

NP

John

∃6.girl(6) ∧ see(John, 6)

_G .(∃6.girl(g) ∧ see(G,6))

_% .∃6.girl(g) ∧ % (6)_G._~.see(G,~)

_% .% (John)

�e computation of VP is particularly complicated, so we write it out step by

CSE 40657/60657: Natural Language Processing Version of April 19, 2021

Chapter 6. Semantics 103

step:

(_% ._5 ._G .5 (_~.%G~)) (_G._~.see(G,~)) (_% .(∃6.girl(g) ∧ %6))
−→ (_5 ._G .5 (_~.(_G._~.see(G,~))G~)) (_% .(∃6.girl(g) ∧ %6))
−→ (_5 ._G .5 (_~.(_~.see(G,~))~)) (_% .(∃6.girl(g) ∧ %6))
−→ (_5 ._G .5 (_~.see(G,~))) (_% .(∃6.girl(g) ∧ %6))
−→ _G.(_% .(∃6.girl(g) ∧ %6)) (_~.see(G,~))
−→ _G.(∃6.girl(g) ∧ (_~.see(G,~))6)
−→ _G.(∃6.girl(g) ∧ see(G, 6)) .

Finally, we re�ne our grammar so that “a” has its own semantics.

S→ NP VP _5 ._% .5 %

NP→ John _% .% (John)
NP→ Mary _% .% (Mary)
NP→ Det N _3._5 .3 5

Det→ a _# ._% .(∃G .#G ∧ %G)
Det→ every _# ._% .(∀G .#G ∧ %G)

N→ boy _1.boy(1)
N→ girl _6.girl(6)

VP→ TV NP _% ._5 ._G .5 (_~.%G~)
TV→ sees _G ._~.see(G,~)

References
Abend, Omri and Ari Rappoport (2013). “Universal Conceptual Cognitive An-

notation (UCCA)”. In: Proceedings of the 51st Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long Papers). So�a, Bulgaria,

pp. 228–238. url: http://www.aclweb.org/anthology/P13-1023.

Asuncion, Arthur et al. (2009). “On Smoothing and Inference for Topic Models”.

In: Proc. UAI, pp. 27–34.

Banarescu, Laura et al. (2013). “Abstract Meaning Representation for Sembank-

ing”. In: Proceedings of the Linguistic Annotation Workshop. So�a, Bulgaria,

pp. 178–186.

Blei, David M., Andrew Y. Ng, and Michael I. Jordan (2003). “Latent Dirichlet

Allocation”. In: J. Machine Learning Research 3, pp. 993–1022.

Böhmová, Alena et al. (2003). “�e Prague Dependency Treebank: A �ree-Level

Annotation Scenario”. In: Treebanks: Building and Using Parsed Corpora. Ed.

by A. Abeillé. Kluwer, pp. 103–127.

Brown, Peter F. et al. (1991). “Word-sense disambiguation using statistical meth-

ods”. In: Proceedings of the 29th Annual Meeting of the Association for Compu-
tational Linguistics (ACL-91). Berkeley, CA, pp. 264–270.

CSE 40657/60657: Natural Language Processing Version of April 19, 2021

http://www.aclweb.org/anthology/P13-1023

Chapter 6. Semantics 104

Chiang, David et al. (2018). “Weighted DAG automata for semantic graphs”. In:

Computational Linguistics 44.1, pp. 119–186.

Gildea, Daniel and Daniel Jurafsky (2000). “Automatic Labeling of Semantic Roles”.

In: Proceedings of the 38th Annual Conference of the Association for Computa-
tional Linguistics (ACL-00). Hong Kong, pp. 512–520.

Hofmann, �omas (1999). “Probabilistic Latent Semantic Analysis”. In: Uncer-
tainty in Arti�cial Intelligence (UAI), pp. 289–296.

Hovy, Eduard et al. (2006). “OntoNotes: �e 90% Solution”. In: Proceedings of the
Human Language Technology Conference of the NAACL, Companion Volume:
Short Papers. New York City, USA, pp. 57–60. url: http://www.aclweb.

org/anthology/N/N06/N06-2015.

Oepen, Stephan and Jan Tore Lønning (2006). “Discriminant-Based MRS Bank-

ing”. In: International Conference on Language Resources and Evaluation (LREC).
Genoa, pp. 1250–1255.

Palmer, Martha, Daniel Gildea, and Paul Kingsbury (2005). “�e Proposition Bank:

An Annotated Corpus of Semantic Roles”. In: Computational Linguistics 31.1,

pp. 71–106. doi: 10.1162/0891201053630264. url: https://www.aclweb.

org/anthology/J05-1004.

Soon, Wee Meng, Hwee Tou Ng, and Daniel Chung Long Lim (2001). “A Machine

Learning Approach to Coreference Resolution of Noun Phrases”. In: Compu-
tational Linguistics 27.4, pp. 521–544.

CSE 40657/60657: Natural Language Processing Version of April 19, 2021

http://www.aclweb.org/anthology/N/N06/N06-2015
http://www.aclweb.org/anthology/N/N06/N06-2015
https://doi.org/10.1162/0891201053630264
https://www.aclweb.org/anthology/J05-1004
https://www.aclweb.org/anthology/J05-1004

	Semantics
	Vectors
	Classification
	Topic modeling

	Graphs
	Named entity recognition
	Semantic graphs

	Logic
	Logical forms
	Compositionality
	Lambda calculus
	Examples

