
Chapter 7

Generation

Generation has long been plagued by the question, “Generation from what?”
(Wilks). Because computer representations of semantics are a topic of research,
and the systems that compute these representations are also a topic of research,
it’s more di�cult to work on generation systems.

�ere are, however, a large number of NLP tasks involving output of text that
sidestep the problem of meaning representation by taking other forms of input
besides semantics. For example:

constrain task input output

less ↑ Random generation nothing random text
Summarization document summary of document
�estion answering question answer to the question
Translation sentence same meaning in other language

more ↓ ASR spoken sentence same words in text form

At one end of the spectrum are unconstrained generation systems where the
input is nothing, or maybe a few starting words, and the system is supposed to
generate random text. �ese systems are good for entertainment but don’t have
clear practical uses. At the other end are constrained systems where the input is,
say, speech, and the system is supposed to output the same thing in textual form;
most people don’t think of this as generation at all.

In between are the more interesting cases. We’ve talked about translation
already; below, we talk about question answering and summarization.

7.1 Question Answering
�estion answering is (surprisingly enough) the task of answering questions.
Although one could imagine treating QA as a translation problem (translating
questions to answers), you would need quite a lot of training data in the form
of question-answer pairs, and a large model, to amass the knowledge needed to
answer questions well.

We assume that we have modest-sized collection of questions and answers to
train on (for example, S�AD has 100k questions) and a large collection of docu-
ments that potentially contain information needed for answering new questions
(for example, all of Wikipedia).

105

Chapter 7. Generation 106

We’ll focus on approaches that divide the process into two stages:

1. In the retrieval step, traditional information retrieval methods are used to
�nd a document or documents that are likely to contain the answer to the
question. For example, you could turn the question into a bag-of-words
vector and turn all the documents into bag-of-words vectors (normalized
for length), and choose the document with the highest dot-product with
the question.

2. In the reading step, we use the retrieved document and question together
to generate an answer.

Much work on QA assumes that the retrieval step is already done and only
tackles the reading step. For example, the S�AD dataset (Rajpurkar et al., 2016)
includes with each question a paragraph from Wikipedia that contains the an-
swer in it. (In version 2 of the dataset, sometimes the paragraph intentionally
does not contain the answer, in which case the system is supposed to refuse to
answer.) �is restricted form of QA is sometimes called machine reading com-
prehension (MRC).

For example, the �rst item in S�AD 1.1 gives the paragraph:

architecturally , the school has a catholic character . atop the main

building ’s gold dome is a golden statue of the virgin mary

. immediately in front of the main building and facing it , is a

copper statue of christ with arms upraised with the legend " venite ad

me omnes " . next to the main building is the basilica of the sacred

heart . immediately behind the basilica is the grotto , a marian place

of prayer and reflection . it is a replica of the grotto at lourdes ,

france where the virgin mary reputedly appeared to saint bernadette

soubirous in 1858 . at the end of the main drive (and in a direct

line that connects through 3 statues and the gold dome) , is a simple

, modern stone statue of mary .

�e question is:

to whom did the virgin mary allegedly appear in 1858 in lourdes france ?

And the answer is words 102–104 (saint bernadette soubirous).
We could build a simple MRC system, again, by treating it as a translation

problem. �e above example would be presented as a source string consisting of
both the question and the paragraph:

BOS to whom did the virgin mary allegedly appear in 1858 in lourdes

france ? SEP architecturally , the school has a catholic character

. atop the main building ’s gold dome is a golden statue of the virgin

mary . immediately in front of the main building and facing it , is a

copper statue of christ with arms upraised with the legend " venite ad

me omnes " . next to the main building is the basilica of the sacred

heart . immediately behind the basilica is the grotto , a marian place

of prayer and reflection . it is a replica of the grotto at lourdes ,

france where the virgin mary reputedly appeared to saint bernadette

soubirous in 1858 . at the end of the main drive (and in a direct

line that connects through 3 statues and the gold dome) , is a simple

, modern stone statue of mary . EOS

CSE 40657/60657: Natural Language Processing Version of April 28, 2021

Chapter 7. Generation 107

But this system would be free to generate arbitrary text, which seems waste-
ful since we know that the answer is literally found in the paragraph. So a more
direct approach would be to directly predict the starting and ending word of the
answer. If H ∈ R=×3 is the encoding of the source sentence, we can predict the
starting and ending position using two so�max layers:

wstart,wend ∈ R3

pstart, pend ∈ R=

pstart = so�maxHwstart (7.1)
pend = so�maxHwend (7.2)

�e loss function to be minimized for a sentence where 8 and 9 are the true start-
ing and ending position would be:

! = −(log[pstart]8 + log[pend]9). (7.3)

7.2 Summarization
Summarization is the task of converting a long document (or documents) into a
shorter one. �is is something humans do a lot – for example, papers have ab-
stracts, movies and novels have synopses, some news articles have bullet points,
social media posts have tl;drs.

Approaches to summarization are usually divided into two categories; the di-
vision is so sharp as to almost be a divison into two subtasks. Extractive summa-
rization builds a summary out of pieces of the source document, while abstractive
summarization composes a summary from scratch.

7.2.1 Extractive summarization
Extractive summarization is really old, dating back to the work of Luhn (1958).
�e steps in a typical extractive summarization method are as follows.

1. Divide the source text into segments (usually sentences).

2. Compute a vector encoding of each sentence.

3. �ird, select which sentences will appear in the generated summary.

It appears that most extractive approaches don’t a�empt to reorder the selected
sentences.

A�er the �rst step, then, we’ve essentially reduced the summarization prob-
lem to a binary classi�cation problem. However, we don’t want to classify each
sentence independently, because we don’t want to select redundant sentences.

A method commonly described in online tutorials, similar to Luhn’s original
method, is:

2. Represent each sentence as a bag-of-words. (To improve the quality of the
sentence vectors, one can remove stop words or use tf-idf or BM25.) Nor-
malize the sentence vectors by sentence length.

CSE 40657/60657: Natural Language Processing Version of April 28, 2021

Chapter 7. Generation 108

3. Sum up each sentence vector and select those sentences whose score is
above a certain threshold.

Now, suppose that we have training data. For example, the CNN/Daily Mail
dataset (Nallapati et al., 2016) contains summaries of news articles based on bullet
points at the top of the articles. We can shoehorn this into a dataset for extractive
summarization by selecting the sentences of the article that are most similar to
the bullet points.

�e above bag-of-words approach could be minimally modi�ed into a naive
Bayes classi�er, but let’s look at something more modern. �e model of Y. Liu
and Lapata (2019) is simple and e�ective (though it works best when pretrained
with BERT).

2. Run a Transformer encoder on each sentence. To get a single vector for
each sentence, prepend a CLS token to each sentence and use its encoding.

3. Apply another Transformer to the sentence vectors to obtain a new se-
quence of sentence vectors. �en apply a sigmoid layer (= so�max layer
over {yes, no}) to classify each sentence.

7.2.2 Abstractive summarization
For a long time, abstractive summarization was a much less common approach,
but a�er the advent of a�ention in neural machine translation, abstractive sum-
marization has become a lot more common (Rush, Chopra, and Weston, 2015).

�e basic idea is extremely simple: treat summarization as translation prob-
lemwhere the source language is “long English” and the target language is “short
English.”

It’s possible to make enhancements to the model to make it more suitable for
summarization (See, P. J. Liu, and Manning, 2017).

• A copy mechanism similar to the one we saw in semantic parsing.

• A coverage model, originally developed for machine translation (Tu et al.,
2016), that helps the model learn not to repeat itself. Essentially, at time
step 8 of generating the target sentence, we sum up the a�entions from
time steps 1, . . . , 8 and the sum is taken into account when computing the
a�ention for time step 8 . (I would have given equations, but it’s not totally
clear how coverage would be incorporated into the version of the model
we gave in §3.6.3.)

CSE 40657/60657: Natural Language Processing Version of April 28, 2021

	Generation
	Question Answering
	Summarization
	Extractive summarization
	Abstractive summarization

