
Chapter 1

Introduction

1.1 Applications of NLP
Natural language processing (NLP) is about making computers do all kinds of

things with natural language (that is, human languages, like English or Chinese).

I can think of three broad areas where this would be useful.

First, we would like NLP to help humans overcome language barriers with

other humans. Historically, this was the oldest application of NLP, and indeed

one of the very oldest applications of computers. The most well-known early

system was developed by Georgetown and IBM in the early 1950s for translating

Russian into English. Now, you can use Google Translate to get translations that

are very high quality under the right conditions, but still need work under other

conditions (like, translating Shakespeare into Japanese).

Second, we’d like to be able to interact directly with computers using natural

language. This idea has captured imaginations for a long time, since at least Star
Trek and 2001: A Space Odyssey’s HAL 9000, and became a major goal of NLP

research and development – for example, in the 1990s Bill Gates was a major

advocate, saying things like “Most of [our research] now is focused on what we

call the natural interface – the computer being able to listen and talk and recog-

nize handwriting. . . .Now we’re betting the company on these natural interface

technologies.”
1
Today, we have on the one hand assistants like Siri or Alexa,

which perform some useful functions but aren’t great conversationalists, and on

the other hand ChatGPT, which has quite remarkable language abilities, but you

wouldn’t want it to control your appliances just yet.

Another limitation is when there is too much language: I can read a book,

but I can’t read a million books. I’d like to use NLP to read them for me and then

answer questions about them, summarize them, extract relevant pieces of infor-

mation from them, and so on. As more and more data comes into existence, and

much of it in the form of natural language, this application of NLP has become

more andmore important. Much of this development has been behind the scenes,

in web server backends and in national intelligence agencies, but ChatGPT again

has brought computers’ ability (and sometimes inability) to extract knowledge

from natural language data very much into the public eye.

1
Remarks at Gartner Symposium, 1997/10/06, Orlando, FL.

1

Chapter 1. Introduction 2

1.2 Approaches to NLP

1.2.1 Linguistics
Very early NLPwasmore or less ad hoc, but in the 1960s, a committee of scientists

appointed by the government prescribed more basic research into computational
linguistics, the use of computational methods for the scientific study of language.

The hope was, and is, that by understanding better how human language works,

we will do a better job programming computers to imitate it.

For some (myself included), computational linguistics is interesting even if it

doesn’t lead to NLP applications. Although human languages seem so different

from the formal languages and computer languages invented by people, they,

too, are governed by rules, rules that you were never explicitly taught by your

parents or in school. To take one example, if you are a native speaker of English,

then you know that the sentence

(1.1) Who did Bill ask when arrived?

is not English. You have to say “Bill asked when who arrived?” instead. A good

NLP system should be able to distinguish these two sentences; a theory of lan-

guage should explain why these two sentences are different; a computational

theory of language should lead to an algorithm for distinguishing them.

1.2.2 Learning
In the 1990s, there was a second major shift in the way natural language pro-

cessing was done. Instead of just building systems that simulate human use of

language, we began trying to simulate a second human behavior: learning lan-

guage. In other words, we used to program the rules of language directly into the

computer, but now we program computers to learn the rules, and their weights,

automatically from data. So the goal of modern, statistical NLP is to build com-

puter systems that learn from data how to use human language.

Initially, people who used linguistics and the people who used statistics were

at odds with each other.The reason was simple: linguistics is primarily interested

in structures and representations that exist in the mind and cannot be directly

observed, whereas statistics are based on observable quantities. So for a while, it

was thought that if you were using linguistics, you did not believe in statistics,

and if you were using statistics, you did not believe in linguistics.

1.2.3 Linguistics and learning
The lines of this debate have shifted repeatedly over time. First, people started

to build datasets annotated with linguistic structures (for example, the Penn

Treebank), thus making unobservable structures and representations observable.

Thus it became possible to use statistics and linguistics together: “linguistics tells

us what to count, and statistics tell us how to count it” (Joshi).

Second, people started to develop models that can learn unobserved things

(for example, syntactic structure). These models, though not tied to a particular

linguistic theory, were nevertheless informed by what linguistics says about how

CSE 40657/60657: Natural Language Processing Version of August 15, 2023

Chapter 1. Introduction 3

language works (for example, syntactic structure is recursive, so perhaps our

models should be recursively structured).

As models have become more powerful, they have become more and more

generic, relying less and less on principles from linguistics. At the same time, we

have a greater and greater need to understand what these models are doing when

they process language, and linguistics plays an important role in analyzing and

explaining what computers learn about language (just as it tries to analyze and

explain what humans learn about language).

1.3 Stages of NLP
Traditionally the ultimate end-to-end NLP system was envisioned to be as a

pipeline of stages corresponding to levels of linguistic structure. Practical sys-

tems nearly always took shortcuts, and our modern systems certainly do, but

these stages are still valuable for thinking about how language works.

1.3.1 Text
Raw language input exists in many forms: primarily, speech (for spoken lan-

guages) and signing (for sign languages), and secondarily, all the ways that peo-

ple have come up with over the centuries for encoding language, like hand-

writing, printing, and keyboard input. (There are other forms of language like

whistling and drums that are not the focus of any serious NLP research that I’m

aware of.)

The first stage of language processing involves ingesting language in one or

more of the above forms and getting it into a representation that computers can

do useful thingswith. Nearly always, that representation is plain text. Converting

each of the above forms of language into text is a research field in its own right:

speech recognition, sign language recognition, handwriting recognition, optical

character recognition. Even converting typing into text is not trivial (think about

mobile devices, or users with disabilities), and research on text input methods sits

at the border between human-computer interaction and NLP.

1.3.2 Structure
Next, computers need to be able to discern the structure of natural language text
(Figure 1.1): words combine to form phrases, phrases combine to form sentences;

going in the other direction, words can often be broken down into smaller units

called morphemes.
The reason that we’re interested in structure is that we believe that structure

is the key to understanding language, as well as other understanding-like tasks.

For example, suppose you want to translate this sentence into (bad) Latin:

(1.2) spiritus

spirit

nobile

noble

minimum

smallest

virum

man

augificat

embiggens

In order to do this right, your system has to learn that in Latin, verbs (augificat

= embiggen) usually come after their objects (minimum virum = the smallest

CSE 40657/60657: Natural Language Processing Version of August 15, 2023

Chapter 1. Introduction 4

a noble spirit embiggens the smallest man

embiggens the smallest man

the smallest man

mansmallest

-estsmall

the

embiggens

-sembiggen

- enbigen-

a noble spirit

spiritnoblea

Figure 1.1: Levels of structure.

man). But the idea of a “verb” or “object” is not explicit in language data; it’s part

of syntactic structure.

So natural language understanding systems need to be able to recover (in

some way, not necessarily explicitly) syntactic structure. The big problem at this

stage is ambiguity: a given expression can have more than one structure. In fact,

most expressions have many, many structures. So the computer’s job is to figure

out which structure out of all the possible structures is the right one.

1.3.3 Meaning
Although some applications (like grammar checking) might stop at analyzing

structure, most interesting applications of NLP do something with the meaning

of natural language input.

The principle of compositionality, which originates in the philosophy of lan-

guage, says that the meaning of an expression is a function of the meanings of

its subexpressions. A sentence’s meaning is a function of its phrases’ meanings,

a phrase’s meaning is a function of its words’ meanings, and a word’s meaning is

a function of its morphemes’ meanings. So we use the structure produced in the

previous stage (1.3.2), each level of which has meaning (as opposed to the first

stage (1.3.1): a letter/sound t doesn’t have meaning, but a morpheme -est does).
So, having determined the structure of a piece of text, computing its meaning

is thought to be a bottom-up process, from the morphemes at the bottom all the

way up to sentences and beyond.

1.3.4 Generation
Finally, in many applications, we need the computer to go in the reverse direc-

tion, from internal representations of meaning to spoken or written language.

Some of these steps are challenging (semantics to structure), some are trivial

(structure to text), and some are beyond the scope of this course (text to speech

or handwriting).

CSE 40657/60657: Natural Language Processing Version of August 15, 2023

Chapter 1. Introduction 5

1.4 Probability
Below is a very brief review of basic probability theory. The notation used for

probabilities in NLP is a little sloppy, but hopefully this is good enough. For a

proper treatment, see the textbook by Bertsekas and Tsitsiklis (2008).

Random variables. A random variable is a variable with a different random

value in each “experiment”. For example, if our experiments are coin flips, we

could define a random variable 𝐶 ∈ {heads, tails} for the result of the flip. Or, if
our experiments are the words of a speech, we could define a random variable

𝑊 ∈ {a, aa, ab, . . .} for the words spoken. If 𝑋 is a random variable with values

in X, we call 𝑃 (𝑋) the distribution of 𝑋 . If 𝑥 ∈ X, we write 𝑃 (𝑋 = 𝑥) for the
probability that 𝑋 has value 𝑥 . We must have∑︁

𝑥∈X
𝑃 (𝑋 = 𝑥) = 1.

For example, if 𝑃 (𝑊) is a distribution over English words, we might have

𝑃 (𝑊 = the) = 0.1

𝑃 (𝑊 = syzygy) = 10
−10

...

Joint and marginal probabilities. Things get more interesting when we deal

with more than one random variable. For example, suppose our experiments

are words spoken during a debate, and 𝑊 is again the words spoken, while

𝑆 ∈ {Biden,Trump, . . .} is the person speaking. We can talk about the joint dis-
tribution of 𝑆 and𝑊 , written 𝑃 (𝑆,𝑊), which should satisfy∑︁

𝑠,𝑤

𝑃 (𝑆 = 𝑠,𝑊 = 𝑤) = 1.

Let’s make up some numbers:

𝑃 (𝑆 = Trump,𝑊 = bigly) = 0.2

𝑃 (𝑆 = Trump,𝑊 = huge) = 0.4

𝑃 (𝑆 = Biden,𝑊 = c’mon) = 0.3

𝑃 (𝑆 = Biden,𝑊 = man) = 0.1.

We can also recover distributions over speakers or words:

𝑃 (𝑆 = 𝑠) =
∑︁
𝑤

𝑃 (𝑆 = 𝑠,𝑊 = 𝑤)

𝑃 (𝑊 = 𝑤) =
∑︁
𝑠

𝑃 (𝑆 = 𝑠,𝑊 = 𝑤),

These are known as the marginal distributions of 𝑆 and𝑊 , respectively, and the

act of summing over𝑊 or 𝑆 is known as marginalizing out𝑊 or 𝑆 , respectively.

CSE 40657/60657: Natural Language Processing Version of August 15, 2023

Chapter 1. Introduction 6

Using our made-up numbers, we get the marginal distributions

𝑃 (𝑆 = Trump) = 0.2 + 0.4 = 0.6

𝑃 (𝑆 = Biden) = 0.3 + 0.1 = 0.4

and

𝑃 (𝑊 = bigly) = 0.2

𝑃 (𝑊 = huge) = 0.4

𝑃 (𝑊 = c’mon) = 0.3

𝑃 (𝑊 = man) = 0.1.

It’s extremely common to write 𝑃 (𝑤) as shorthand for 𝑃 (𝑊 = 𝑤). This leads

to some sloppiness, because the symbol 𝑃 is now “overloaded” to mean several

things and you’re supposed to know which one. To be precise, we should dis-

tinguish the distributions (by writing 𝑃 (𝑊 = 𝑤) versus 𝑃 (𝑆 = 𝑠), or sometimes

𝑃𝑊 (𝑤) versus 𝑃𝑆 (𝑠)). But in NLP, we deal with some fairly complicated struc-

tures, and it becomes messy to keep this up. In practice, it’s rarely a problem to

use the sloppier notation.

Conditional probabilities. We also define the conditional distributions

𝑃 (𝑠 | 𝑤) = 𝑃 (𝑠,𝑤)
𝑃 (𝑤)

𝑃 (𝑤 | 𝑠) = 𝑃 (𝑠,𝑤)
𝑃 (𝑠) .

Note that ∑︁
𝑠

𝑃 (𝑠 | 𝑤) = 1∑︁
𝑤

𝑃 (𝑤 | 𝑠) = 1.

You should know this already, but it should be second nature, and in particular, be

sure never to get 𝑃 (𝑠 | 𝑤) and 𝑃 (𝑤 | 𝑠) confused! Using our made-up numbers:

𝑃 (Trump | bigly) = 0.2/0.2 = 1

𝑃 (bigly | Trump) = 0.2/0.6 ≈ 0.333.

Expected values. Finally, if a random variable has numeric values, we can talk

about its average or expected value. For example, let 𝑐e (𝑤) be the number of

occurrences of the letter e in𝑤 . The expectation of 𝑐e is

𝐸 [𝑐e] =
∑︁
𝑤

𝑃 (𝑊 = 𝑤) 𝑐e (𝑤),

and using our made-up numbers, this is

𝐸 [𝑐e] = 0.2 · 0 + 0.4 · 1 + 0.3 · 2 + 0.1 · 0 = 1.

CSE 40657/60657: Natural Language Processing Version of August 15, 2023

Chapter 1. Introduction 7

Estimating probabilities. There’s a “true” probability distribution over English

words, 𝑃 (𝑊), but it’s impossible to know what it really is. If we want actual

numbers, we need an estimate: 𝑃 (𝑤) ≈ \𝑤 . (Here we write 𝑃 (𝑤) for the true

probability and \𝑤 for its estimate, but when we don’t need to be so careful,

we often just write 𝑃 (𝑤) for the estimate.) We can obtain an estimate from a

collection of English text,𝑤1 · · ·𝑤𝑁 . Let 𝑐 (𝑤) be the number of times that word

𝑤 is seen in the data. Then the maximum-likelihood estimate for 𝑃 (𝑤) is:

\𝑤 =
𝑐 (𝑤)∑
𝑤′ 𝑐 (𝑤 ′) =

𝑐 (𝑤)
𝑁

.

It’s called the maximum-likelihood estimate because it’s the estimate that maxi-

mizes the likelihood, which is (our estimate of) the probability of the data, thought

of as a function of the \ ’s. Let 𝜽 stand for all the \𝑤 ’s; then the likelihood is

L(𝜽) = \𝑤1
· · · \𝑤𝑁

.

Setting 𝜽 to maximize the likelihood yields the estimates (1.4). These estimates

are the ones that give the most probability to the observed strings (and the least

probability to the unobserved strings).

1.5 Vectors and matrices
We don’t need any fancy linear algebra in this class, but you should be very

familiar with basic vector and matrix operations. Let

𝑐 ∈ R scalar

x, y ∈ R𝑛 vectors

A ∈ R𝑚×𝑛,B ∈ R𝑛×𝑝 matrices

I will try to write the 𝑖-th component of x as x𝑖 , not as 𝑥𝑖 (and similarly A𝑖 𝑗 , not

𝐴𝑖 𝑗), but I’m sure I’ll slip up sometimes. I’ll occasionally use the notation A𝑖,∗ for
the 𝑖-ith row of A and A∗, 𝑗 for the 𝑗-th column of A.

[A⊤]𝑖 𝑗 = A𝑗𝑖 matrix transpose

[𝑐x]𝑖 = 𝑐x𝑖 scalar product

[𝑐A]𝑖 𝑗 = 𝑐A𝑖 𝑗 scalar product

[Ay]𝑖 =
∑︁
𝑗

A𝑖 𝑗y𝑗 matrix-vector product

[AB]𝑖𝑘 =
∑︁
𝑗

A𝑖 𝑗B𝑗𝑘 matrix-matrix product

x · y =
∑︁
𝑖

x𝑖y𝑖 dot product

[exp x]𝑖 = exp x𝑖 elementwise operation

Vector/matrix calculus notation is a headache, but we probably only need the

following notation. See the tutorial by Parr and Howard (2018) for more infor-

mation. If 𝑓 : R𝑛 → R, the gradient of 𝑓 is a function from vectors to vectors,

∇𝑓 : R𝑛 → R𝑛 , such that [∇𝑓 (y)]𝑖 is the partial derivative of 𝑓 (x) with respect

to x𝑖 , evaluated at y.

CSE 40657/60657: Natural Language Processing Version of August 15, 2023

Chapter 1. Introduction 8

1.6 Logarithms
You learned logarithms a long time ago, but you’ll really use them a lot in this

class. The following identities should be second nature:

log exp𝑥 = 𝑥 exp log𝑥 = 𝑥

log𝑥𝑦 = log𝑥 + log𝑦 exp(𝑥 + 𝑦) = exp𝑥 exp𝑦

log

∏
𝑖

𝑥𝑖 =
∑︁
𝑖

log𝑥𝑖 exp

∑︁
𝑖

𝑥𝑖 =
∏
𝑖

exp𝑥𝑖

log𝑥𝑛 = 𝑛 log𝑥 exp𝑛𝑥 = (exp𝑥)𝑛

log 1 = 0 exp 0 = 1

Unless otherwise indicated, log and exp will always have base 𝑒 .

Log-probabilities. Logarithms are used a lot to simplify expressions like this

product of many probabilities:

𝑝 (𝑥1, . . . , 𝑥𝑛) =
∏
𝑖

𝑝 (𝑥𝑖).

It’s extremely common to take the log of everything, changing the product into

a sum:

log𝑝 (𝑥1, . . . , 𝑥𝑛) =
∑︁
𝑖

log𝑝 (𝑥𝑖).

There are a few reasons for this. First, it used to be that additions are faster than

multiplications, but we don’t worry about this anymore (in fact, floating-point

multiplication is sometimes faster). Second, it’s often easier on paper to work

with sums instead of products. (For example, taking derivatives is easier.)

Third, a product of many probabilities quickly becomes a very small number.

An IEEE 754 double only goes down to 10
−308

, and we often deal with probabili-

ties much smaller than that. Log-probabilities can represent numbers as small as

exp−10308, which is smaller than we’ll ever need.

Computing with log-probabilities is easy. If we have two log-probabilities

log𝑝 and log𝑞, instead of multiplying 𝑝 and 𝑞, we add log𝑝 and log𝑞 (because

log𝑝𝑞 = log𝑝 + log𝑞). To compare 𝑝 and 𝑞, just compare log𝑝 and log𝑞, which

is equivalent.

The only tricky part is addition. To compute log(𝑝 + 𝑞) given log𝑝 and log𝑞,

we can’t do this:

log(𝑝 + 𝑞) = log(exp log𝑝 + exp log𝑞)

because either of the exp’s might cause an underflow. What should you do in-

stead?The short answer is that you should use library functions designed for this

purpose (in PyTorch, torch.logaddexp or torch.logsumexp).

CSE 40657/60657: Natural Language Processing Version of August 15, 2023

Chapter 1. Introduction 9

The long answer is: Assume that 𝑝 > 𝑞; if not, swap them.Then, observe that:

log(𝑝 + 𝑞) = log𝑝

(
1 + 𝑞

𝑝

)
= log𝑝 + log

(
1 + 𝑞

𝑝

)
= log𝑝 + log

(
1 + exp log

𝑞

𝑝

)
= log𝑝 + log(1 + exp(log𝑞 − log𝑝)) .

Now, the exp could still cause an underflow, but the underflow is harmless. (Why?)

This is sometimes called the log-sum-exp trick. For an extra little boost in accu-

racy, you can use the log1p function, found in nearly all standard libraries, which

computes log(1 + 𝑥) but is accurate for small 𝑥 .

Note that if 𝑝 is a probability, log 𝑝 is negative or zero. Sometimes we work

with − log𝑝 , which is positive or zero, but is confusingly called a negative log-
probability.

Softmax. If 𝑥1, 𝑥2, . . . , 𝑥𝑛 are logs of probabilities forming a probability distri-

bution, then their exps should sum to one. But sometimes, it’s more convenient

to let them be unconstrained numbers (called logits) and force their exps to sum

to one. Let x =
[
𝑥1 𝑥2 · · · 𝑥𝑛

]⊤
be a vector of real numbers (positive or

negative), and define softmax x to be the vector

softmax x =
exp x∑𝑛

𝑖=1 exp x𝑖

where exp x means the elementwise exp of x. The components of softmax x are

guaranteed to sum to one. For example,

softmax

[
−1 0 1

]⊤
=

[
exp−1 exp 0 exp 1

]⊤
exp−1 + exp 0 + exp 1

≈
[
0.368 1 2.718

]⊤
4.086

=
[
0.090 0.245 0.665

]⊤
.

This operation occurs a lot, in many guises and under many names, so it will be

good to familiarize yourself with it and develop an intuition for what it does.

CSE 40657/60657: Natural Language Processing Version of August 15, 2023

Bibliography

Bertsekas, Dimitri P. and John N. Tsitsiklis (2008). Introduction to Probability. 2nd
ed. Athena Scientific.

Parr, Terence and Jeremy Howard (2018).The Matrix Calculus You Need For Deep
Learning. arXiv:1802.01528. url: https://arxiv.org/abs/1802.01528.

10

https://arxiv.org/abs/1802.01528

	Introduction
	Applications of NLP
	Approaches to NLP
	Linguistics
	Learning
	Linguistics and learning

	Stages of NLP
	Text
	Structure
	Meaning
	Generation

	Probability
	Vectors and matrices
	Logarithms

