
Chapter 2

Language Models

Formany years, I have begun this coursewith the topic of languagemodels, which
were traditionally one component of various systems that generate text, like au-

tomatic speech recognition or machine translation. As they were not the most

interesting part of these systems, I used to begin this chapter with a somewhat

apologetic motivation. But now that language models (particularly GPT) have

taken center stage, little motivation is needed.

The job of a language model is to estimate the probability of a sentence

𝑤 = 𝑤1 · · ·𝑤𝑇 , where each 𝑤𝑡 is a character, or a word, or something in be-

tween. (How we cut up a sentence into segments depends on the application,

but the techniques are the same in any case.) We will call each 𝑤𝑡 a word, with
the understanding that it might actually be bigger or smaller than a word. Let Σ,
known as the vocabulary, be the (finite) set of all words that the model knows

about.

2.1 n-gram Models

2.1.1 Model
The simplest kind of language model is an𝑛-gram language model, in which each

word depends on the (𝑛 − 1) previous words. We assume, as we will frequently

do, that the string ends with a special symbol EOS ∈ Σ, which stands for “end

of sentence” (and is written by some authors as </s>). So 𝑤 = 𝑤1 · · ·𝑤𝑇 where

𝑤𝑇 = EOS. In a 1-gram or unigram language model, each word is generated inde-

pendently:

𝑃 (𝑤1 · · ·𝑤𝑇 ) = 𝑝 (𝑤1) · · · 𝑝 (𝑤𝑇 ) (2.1)

where the 𝑝 (𝑎), for all 𝑎 ∈ Σ, are the parameters of the model and

∑
𝑎∈Σ 𝑝 (𝑎) = 1.

The EOS is needed in order to make the probabilities of all sentences of all lengths

sum to one. Imagine rolling a die with one word written on each face to generate

random sentences; in order to know when to stop rolling, you need (at least) one

face of the die to say EOS which means “stop rolling.”

In a 2-gram or bigram language model (also known as a Markov chain), each
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word’s probability depends on the previous word:

𝑃 (𝑤1 · · ·𝑤𝑇 ) = 𝑝 (𝑤1 | BOS)
(

𝑇∏
𝑡=2

𝑝 (𝑤𝑡 | 𝑤𝑡−1)
)

(2.2)

where the 𝑝 (𝑏 | 𝑎) are the parameters of the model, and, for all 𝑎, we have∑
𝑏∈Σ 𝑝 (𝑏 | 𝑎) = 1. Since the first word doesn’t have a real previous word to

condition on, we condition it on a special symbol BOS ∈ Σ (which is written by

some authors as <s>).
A general 𝑛-gram language model is:

𝑃 (𝑤1 · · ·𝑤𝑇 ) =
𝑇∏
𝑡=1

𝑝 (𝑤𝑡 | 𝑤𝑡−𝑛+1 · · ·𝑤𝑡−1), (2.3)

where we pretend that𝑤𝑡 = BOS for 𝑡 ≤ 0. For example, if 𝑛 = 3, then

𝑃 (the cat sat on the mat) = 𝑝 (the | BOS BOS) ·
𝑝 (cat | BOS the) ·
𝑝 (sat | the cat) ·
𝑝 (on | cat sat) ·
𝑝 (the | sat on) ·
𝑝 (mat | on the) ·
𝑝 (EOS | the mat).

2.1.2 Training
Training an 𝑛-gram model is easy. First consider a unigram model (𝑛 = 1). For

each word 𝑎 ∈ Σ, let 𝑐 (𝑎) be the number of times that 𝑎 occurs. Then the proba-

bility of 𝑎 is:

𝑝 (𝑎) = 𝑐 (𝑎)∑
𝑎′∈Σ

𝑐 (𝑎′)

For a general 𝑛-gram model with 𝑛 > 1,

𝑝 (𝑎 | 𝑢) = 𝑐 (𝑢𝑎)∑
𝑎′∈Σ

𝑐 (𝑢𝑎′)

where 𝑢 ranges over (𝑛 − 1)-grams, that is, 𝑢 ∈ Σ𝑛−1.

2.1.3 Smoothing
A never-ending challenge in all machine learning settings is the bias-variance
tradeoff, or the tradeoff between underfitting and overfitting. In language mod-

eling, underfitting usually means that the model probability of a word doesn’t

sufficiently take into account the context of the word. For example, a unigram
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language model would think that “the the the” is a very good sentence. In the

world of 𝑛-gram language models, the antidote to underfitting is to increase 𝑛.

Overfitting usually means that the model overestimates the probability of

words or word sequences seen in data and underestimates the probability of

words or word sequences not seen in data. For example, suppose that

𝑐 (pulchritudinous penguin) = 1

𝑐 (pulchritudinous puppy) = 0

𝑐 (pulchritudinous pachycephalosaur) = 0

𝑐 (pulchritudinous) = 1

The maximum-likelihood estimate would have

𝑃 (penguin | pulchritudinous) = 1

𝑃 (puppy | pulchritudinous) = 0

𝑃 (pachycephalosaur | pulchritudinous) = 0.

Is that a good estimate? No, because “pulchritudinous” is so rare that most words

have never been seen after it. We want to take some probability mass away

from 𝑃 (penguin | pulchritudinous) and give it to 𝑃 (puppy | pulchritudinous)
and 𝑃 (pachycephalosaur | pulchritudinous). Moreover, we don’t have to dis-

tribute probability mass evenly. Since 𝑃 (puppy) > 𝑃 (pachycephalosaur), it’s
reasonable to estimate 𝑃 (puppy | pulchritudinous) > 𝑃 (pachycephalosaur |
pulchritudinous).

The process of taking probability mass away from seen 𝑛-grams and giving

it to unseen 𝑛-grams is called smoothing. The very easiest smoothing method –

which is quite bad for language modeling – is called add-one or Laplace smooth-

ing. Recall that the unsmoothed probability estimate of an 𝑛-gram is

𝑝 (𝑎 | 𝑢) = 𝑐 (𝑢𝑎)∑
𝑎∈Σ

𝑐 (𝑢𝑎′) . (2.4)

Then we simply add 1 to the count of every 𝑛-gram:

𝑝 (𝑎 | 𝑢) = 𝑐 (𝑢𝑎) + 1∑
𝑎′∈Σ
(𝑐 (𝑢𝑎′) + 1) (2.5)

so that the smoothed probability estimate of our example is

𝑃 (penguin | pulchritudinous) = 1

2

𝑃 (puppy | pulchritudinous) = 1

4

𝑃 (pachycephalosaur | pulchritudinous) = 1

4
.

Smoothing is a big subject; to learn more about it, please see the report by Chen

and Goodman (1998).
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2.2 Unknown Words
Natural languages probably don’t have a finite vocabulary, and even if they do,

the distribution of word frequencies has such a long tail that, if we use a lan-

guage model to compute the probability of sentences in test data, words that

are unknown to the model or out-of-vocabulary (OOV) will be rather common.

Unknown words are problematic for all language models, and we have a few

techniques for handling them.

2.2.1 Subword segmentation
We can alleviate the problem by breaking words into smaller pieces. For example,

a word like antidisestablishmentarianism might be unknown. But if our training

data contains the words

antitrust disassemble establishment totalitarianism

and we break up these words into

anti- trust dis- assemble establish -ment totalit- -arianism

then anti- dis- establish -ment -arian -ism are all known.

Currently, the most common method for subword segmentation is byte pair
encoding (Sennrich, Haddow, and Birch, 2016); the unigram model of Kudo and

Richardson (2018) is also widely used. In the limit, one could use individual char-

acters, and even Chinese characters could be broken into sub-characters.

However, even if we use individual characters, there may still be unknown

symbols. (Think, for example, about how many emojis there are.) So, what do we

do with the remaining unknown symbols?

2.2.2 UNK replacement
The answer is simple (perhaps disappointingly so): when we encounter an un-

known symbol in test data, we replace it with a special symbol UNK ∈ Σ. This

raises a new question: how does the model assign a probability to UNK?
An unsmoothed 𝑛-gram model would assign a probability of zero, which

is bad not only because it’s incorrect, but because it multiplies the probability

of the whole sentence by zero. That is, the sentences The UNK saw the dog and

The UNK saw the pulchritudinous pachycephalosaur would have equal probability

(zero). However, a smoothed 𝑛-gram model does not have this problem, because

smoothing even increases the probability estimates of zero-probability events.

When smoothing is not convenient, a simpler method is to pretend that some

symbols seen in the training data are unknown. For example, we might limit the

vocabulary to 10,000 types, and all others are changed to UNK. Or, we might limit

the vocabulary just to types seen two or more times, and all others are changed

to UNK. When we train the language model, we treat UNK like any other symbol,

so it gets a nonzero probability.

CSE 40657/60657: Natural Language Processing Version of August 18, 2023



Chapter 2. Language Models 15

2.3 Evaluation
Whenever we build any kind of model, we always have to think about how to

evaluate it. How do we evaluate language models?

2.3.1 Generating random sentences
One popular way of demonstrating a language model is using it to generate ran-

dom sentences.While this is entertaining and can give a qualitative sense of what

kinds of information a language model does and doesn’t capture, but it is not a
rigorous way to evaluate language models. Why? Imagine a language model that

just memorizes the sentences in the training data. This model would randomly

generate perfectly-formed sentences. But if you gave it a sentence𝑤 not seen in

the training data, it would give𝑤 a probability of zero.

2.3.2 Extrinsic evaluation
The best way to evaluate language models is extrinsically. That is, use the lan-

guage model (possibly in concert with another model) to perform some task, and

evaluate on that task.

2.3.3 Intrinsic evaluation: perplexity
For intrinsic evaluation, the standard way to evaluate a language model is how

well it fits some held-out data (that is, data that is different from the training

data). There are various ways to measure this:

𝐿 = 𝑃 (𝑤1 · · ·𝑤𝑇 ) likelihood (2.6)

𝐻 = − 1

𝑁
log

2
𝐿 per-word cross-entropy (2.7)

PP = 2
𝐻

perplexity (2.8)

We’ve seen likelihood already in the context ofmaximum-likelihood training.

If a model assigns high likelihood to held-out data, that means it’s generalized

well. However, likelihood is difficult to interpret because it depends on𝑤 and, in

particular, 𝑇 .

Cross-entropy is based on the idea that any model can be used for data com-

pression: more predictable symbols can be stored with fewer bits and less pre-

dictable symbols must be stored with more bits. If we built an ideal data com-

pression scheme based on our model and compressed𝑤 , the total cross-entropy,

− log
2
𝐿, is the number of bits we would compress𝑤 into (Shannon, 1948).

The per-word cross-entropy is the average number of bits required per word

of𝑤 , which has the advantage that you can interpret it without knowing 𝑇 . The

best (lowest) possible per-word cross-entropy is 0, which can be achieved only if

the model always knows what the next word will be.Theworst (highest) possible

per-word cross-entropy is log
2
|Σ|, which means that the model doesn’t know

anything about what the next word will be, so the best it can do is guess ran-

domly.
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Perplexity is closely related to per-word cross-entropy; it just undoes the log.

One advantage is that you can interpret it without knowing the base of the log. (A

dubious advantage is that it makes small differences look large.)The best (lowest)

possible perplexity is 1, and the worst (highest) possible perplexity is |Σ|.
Held-out data is always going to have unknown words, which require some

special care. Above, we handled unknown words by mapping them to a special

symbol UNK, but if we compare two language models, they must map exactly the

same subset of word types to UNK. (If not, can you think of a way to cheat and

get a perplexity of 1?)

2.4 Finite Automata
If you’ve takenTheory of Computing, you should be quite familiar with finite au-

tomata; if not, you may be familiar with regular expressions, which are equiva-

lent to finite automata. Manymodels in NLP can be thought of as finite automata,

or variants of finite automata, including 𝑛-gram language models. Although this

may feel like overkill at first, we’ll soon see that formalizing models as finite

automata makes it much easier to combine models in various ways.

2.4.1 Definition
A finite automaton (FA) is an imaginary machine that reads in a string and out-

puts an answer, either “accept” or “reject.” (For example, a FA could accept only

words in an English dictionary and reject all other strings.) At any given time,

the machine is in one state out of a finite set of possible states. It has rules, called
transitions, that tell it how to move from one state to another.

A FA is typically represented by a directed graph.We draw nodes to represent

the various states that the machine can be in. The node can be drawn with or

without the state’s name inside. The machine starts in the initial state (or start
state), which we draw as:

The edges of the graph represent transitions, for example:

𝑞 𝑟
𝑎

which means that if the machine is in state 𝑞 and the next input symbol is 𝑎, then

it can read in 𝑎 and move to state 𝑟 .

We are going to go on assuming that every string ends with EOS, and all

transitions labeled EOS go to the final state (or accept state), which we draw as:

If the machine can reach the end of the string while in a final state, then it accepts

the string. Otherwise, it rejects.

Here’s an example of a finite automaton that generates an infinite number of

grammatical noun phrases. Note that our alphabet is the set of English words,

not letters.
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𝑞1 𝑞2 𝑞3 𝑞4

cats

dogs that

see

chase

EOS

We say that a FA is deterministic (or a DFA) if every state has the property

that, for each label, there is exactly one outgoing transition with that label (like

the above example). When a DFA reads a string, it always knows which state to

go to next.

But if a state has two outgoing transitions with the same label, it is nondeter-
ministic (Rabin and Scott, 1959), or is an NFA for short. For example:

𝑞1 𝑞2
I

𝑞3
s
a
w

c
h
a
s
e
d

𝑞4

s
a
wh

e
a
r
d

𝑞5
her

𝑞6
her

𝑞7

duck

dog

𝑞8
duck

jump

𝑞9

EOS

EO
S

At 𝑞2, if the next word is “saw,” the NFA can go to either 𝑞3 or 𝑞4. Intuitively, 𝑞3
is the state that’s looking for a noun phrase object, while 𝑞4 is the state that’s

looking for a phrase called a small clause. If the sentence continues “her duck

EOS,” it ends up in state 𝑞9 and accepts. If the sentence continues “her dog EOS,”
then the branch that was in 𝑞3 goes to 𝑞5, 𝑞7, 𝑞9 and accepts; the branch that was

in 𝑞4 goes to 𝑞6 and stops. But the NFA accepts as long as at least one of its

branches accepts.

2.4.2 Probabilistic DFAs
Finite automata can accept or reject sentences, but we are interested in using

them to build language models, which can assign probabilities to sentences, and

in particular to each word in a sentence, given the previous words.

A probabilistic DFA (Mohri, 1997) attaches a probability to each transition,

like this:

𝑞 𝑟
𝑎 / 𝑝

.

For each state (except the final state), the probabilities of all of the outgoing

transitions sum to one. The probability of a path through a probabilistic FA is

the product of the probabilities of the transitions along the path. Then the total

probability of all strings is exactly one, that is, the automaton defines a proba-

bility distribution over all strings. For example, we can add probabilities to our

example DFA:
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𝑞1 𝑞2 𝑞3 𝑞4

cats / 0.1
dogs / 0.9 that / 0.2

see / 0.3
chase / 0.7

EOS / 0.8

The string “cats that chase dogs that see cats EOS” has probability 0.1 · 0.2 · 0.7 ·
0.9 · 0.2 · 0.3 · 0.1 = 7.56 · 10−5.

Where do the probabilities come from? Suppose we are given a collectionD
of strings. We also have a DFA 𝑀 , and we want to learn probabilities for 𝑀 . So,

for each string𝑤 ∈ D, run𝑀 on𝑤 and count, for each state 𝑞 and symbol 𝑎 ∈ Σ,
the number of times a transition 𝑞 𝑟

𝑎
(for any 𝑟 ) is used. Call this count

𝑐 (𝑞, 𝑎). Then set

𝑝

(
𝑞 𝑟

𝑎
)
=

𝑐 (𝑞, 𝑎)∑
𝑎′
𝑐 (𝑞, 𝑎′) .

This maximizes the likelihood of D.

An 𝑛-gram language model is a probabilistic DFA with a very simple struc-

ture. A bigram model with an alphabet Σ = {𝑎, 𝑏, EOS} looks like this:

𝑞BOS

𝑞𝑎

𝑞𝑏

𝑞EOS

𝑎 / 𝑝
(𝑎 | B

OS)

𝑏 / 𝑝 (𝑏 | BOS)

𝑎 / 𝑝 (𝑎 | 𝑎)

𝑏
/
𝑝(𝑏
|
𝑎)

𝑎
/
𝑝
(𝑎
|𝑏
)

𝑏 / 𝑝 (𝑏 | 𝑏 )

EOS / 𝑝 (EOS | BOS)

EOS / 𝑝 (EOS | 𝑎)

EOS
/ 𝑝 (E

OS | 𝑏
)

(2.9)

In general, we need a state for every observed context, that is, one for BOS, which
we call 𝑞BOS, and one for each word type 𝑎 ∈ Σ, which we call 𝑞𝑎 . And 𝑞EOS is an

accept state. For all 𝑎, 𝑏, there is a transition

𝑞𝑎 𝑞𝑏
𝑏 / 𝑝 (𝑏 | 𝑎)

and for every state 𝑞𝑎 , there is a transition

𝑞𝑎 𝑞EOS
EOS / 𝑝 (EOS | 𝑎)

.

Generalizing to 𝑛-grams, we need a state for every (𝑛 − 1)-gram. It would be

messy to actually draw the diagram, but we can describe how to construct it:
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• For all 𝑢 ∈ Σ𝑛−1, there is a state 𝑞𝑢 .

• The start state is 𝑞BOS𝑛−1 .

• The accept state is 𝑞EOS.

• For all 𝑎 ∈ Σ, 𝑢 ∈ Σ𝑛−2, 𝑏 ∈ Σ, there’s a transition

𝑞𝑎𝑢 𝑞𝑢𝑏
𝑏 / 𝑝 (𝑏 | 𝑎𝑢 )

.

• For all 𝑢 ∈ Σ𝑛−1, there’s a transition

𝑞𝑢 𝑞EOS
EOS / 𝑝 (EOS | 𝑢 )

.

One can imagine designing other kinds of language models as well. For ex-

ample, a trie is often used for storing lists like dictionaries. A probabilistic trie

would condition each symbol on all previous symbols:

𝑞BOS

𝑞a

a
/ 𝑝 (a

| BOS
)

𝑞b

b / 𝑝 (b | BOS)

𝑞aa

a
/ 𝑝 (a

| a)
· · ·

𝑞ab
b / 𝑝 (b | a)

· · ·

...

𝑞ba
a / 𝑝 (a | b) · · ·

𝑞bb

b / 𝑝 (b | b) · · ·

...

...

2.4.3 Probabilistic NFAs (optional)
This section is not necessary for understanding the rest of this chapter, but is

historically of enough importance that I didn’t want to delete it.

Just as a probabilistic DFA attaches probabilities to the transitions of a DFA,

a probabilistic NFA attaches a probability to every transition of an NFA. Again,

each state (except the final state) has the property that the probabilities of all

of the outgoing transitions sum to one. Since there may be more than one path

that accepts a string 𝑤 , the probability of 𝑤 is the sum of the probabilities of all

accepting paths of𝑤 .

Here’s an example of a probabilistic NFA, known as a hidden Markov model
(HMM).
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𝑞BOS

𝑞1

𝑞2

𝑞EOS

𝑎
/ 𝑝
(1, 𝑎
| BO

S)

𝑏
/ 𝑝
(1, 𝑏
| BO

S)

𝑎 / 𝑝 (2, 𝑎 | BOS)

𝑏 / 𝑝 (2, 𝑏 | BOS)
𝑎
/
𝑝(

2
,𝑎
|
1)

𝑏
/
𝑝(

2
,𝑏
|
1)

𝑎 / 𝑝 (1, 𝑎 | 1)
𝑏 / 𝑝 (1, 𝑏 | 1)

𝑎
/
𝑝
(1
,𝑎
|2
)

𝑏
/
𝑝
(1
,𝑏
|2
)

EOS / 𝑝 (EOS, 𝑎 |
1)

EO
S /

𝑝 (E
OS
, 𝑎
| 2)

𝑎 / 𝑝 (2, 𝑎 | 2)
𝑏 / 𝑝 (2, 𝑏 | 2)

where each transition probability is defined in terms of two smaller steps:

𝑝 (𝑟, 𝑎 | 𝑞) = 𝑡 (𝑟 | 𝑞) 𝑜 (𝑎 | 𝑟 ). (2.10)

Notice how a single string can have multiple accepting paths. For example, if

the input symbols are English, then we could set the transition probabilities so

that the NFA goes to 𝑞1 when reading a noun and 𝑞2 when reading a verb. In

the sentence “I saw her duck,” the word “duck” could be either a noun or a verb,

so it would be appropriate for the NFA to have two paths that accept this sen-

tence. Assuming that possessive “her” is a kind of noun, the two paths would be:

𝑞BOS, 𝑞1, 𝑞2, 𝑞1, 𝑞1, 𝑞EOS and 𝑞BOS, 𝑞1, 𝑞2, 𝑞1, 𝑞2, 𝑞EOS.

How do we train a probabilistic NFA? Assume we are given a collection D
of strings. We also have an NFA 𝑀 , and we want to learn probabilities for 𝑀 .

The procedure we gave above for DFAs won’t work. This is because, for a given

string, there might be more than one path that accepts it, and we don’t know

which path’s transitions to count. We want to maximize the log-likelihood of the

training data,

𝐿 = log

∏
𝑤∈D

𝑃 (𝑤).

Recall that 𝑃 (𝑤) is the sum of the probabilities of all accepting paths for 𝑤 . In

the worst case, there could be exponentially many such paths. The good news is

that 𝑃 (𝑤) can be calculated efficiently. Number the states of𝑀 as 𝑞1, . . . , 𝑞𝑑 . Let

s ∈ R𝑑 , f ∈ R𝑑 , and 𝜇 : Σ→ R𝑑×𝑑 be such that

s𝑖 =

{
1 if 𝑞𝑖 is the start state

0 otherwise

and [𝜇 (𝑎)]𝑖 𝑗 is the probability of transition 𝑞𝑖 𝑞 𝑗
𝑎

, and if 𝑞 𝑗 is the accept

state, then f𝑖 is the probability of transition 𝑞𝑖 𝑞 𝑗
EOS

. Then

𝑃 (𝑤) = f⊤𝜇 (𝑤𝑁 ) · · · 𝜇 (𝑤1) s.
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The bad news is that we can’t just maximize 𝐿 by setting its derivatives to

zero and solving for the transition probabilities. Instead, we must use some kind

of iterative approximation. The traditional way to do this is called expectation-
maximization. The other way is to use gradient-based optimization, which we’ll

cover later when we talk about neural networks (Section 2.5.4).

2.5 Recurrent Neural Networks
For a long time, researchers tried to find language models that were better than

𝑛-gram models and failed, but in recent years, neural networks have become

powerful enough to retire 𝑛-grams at last. One way of defining a language model

as a neural network is as a recurrent neural network (RNN).

2.5.1 From finite automata. . .
I’d like to motivate RNNs from a historical point of view, because RNNs and finite

automata have a common ancestor. This section is not absolutely necessarily for

understanding the rest of this chapter, but I think showing the connection be-

tween finite automata and RNNs helps to explain why RNNs are so much more

successful.

Consider the problem of writing an automaton that accepts only pangrams,
sentences that contain all 26 letters of the English alphabet. The most famous

pangram is “The quick brown fox jumped over the lazy dogs.” This is an example

of a problem where many constraints need to be satisfied at the same time, and

is not just relevant for word games; in language modeling, there are many (soft)

constraints that need to be satisfied at once, many more than 26.

A DFA for strings containing all symbols in {a, b, c} is

∅

{a}

{b}

{c}

a

b

c

{b, c}

{a, c}

{a, b}

a

b

c

a

b

c

a

b

c

{a, b, c}

b, c

a, c

a, b

a

b

c

a, b, c

EOS

We’ve labeled each state with the set of letters that has been seen so far. This

means that in general, this DFA has 𝑂
(
2
|Σ | )

states!
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Recall that NFAs are equivalent to DFAs, but NFAs could be much smaller

than DFAs. Is there a more efficient NFA for pangrams? Here’s a wrong attempt:

𝑞f

−a

b, c

b, c

+a

a

a

EOS

a, b, c

−b
a, c

a, c

+b

b

b EOS

a, b, c

−c

a, b

a, b

+c

c

c

EOS

a, b, c

The NFA can be in state −a if it hasn’t read an a yet, and it can be in state +a
if it has read an a. Similarly for b and c. This machine has 𝑂 ( |Σ|) states, which
is much better than before! The problem is that it doesn’t work – because it can

reach state 𝑞f if it has read an a or a b or a c. What we really want is for it to reach

state 𝑞f if it has read an a and a b and a c. And we can get that, if we switch to a

more powerful kind of automaton.

Let’s define some notation. Consider an automaton 𝑀 reading the string

𝑤1 · · ·𝑤𝑇 . Number the states of 𝑀 as 𝑞1, . . . , 𝑞𝑑 . We want to define a sequence

of vectors h(𝑡 ) (𝑡 = 0, . . . ,𝑇 ) such that h(𝑡 )
𝑗

= 1 if 𝑀 can be in state 𝑞𝑖 at time 𝑡 ,

that is, just after reading𝑤𝑡 , and h
(𝑡 )
𝑖

= 0 otherwise. (The superscripts are written

with parentheses to make it clear that this isn’t exponentiation.)

For NFAs, the h(𝑡 ) are defined as follows. Initially h(0)
𝑖

= 1 iff 𝑞𝑖 is the start

state, and, for 𝑡 > 0, h(𝑡 )
𝑗

= 1 iff there is at least one state 𝑞𝑖 such that h(𝑡−1)
𝑖

= 1

and there is a transition 𝑞𝑖 𝑞 𝑗
𝑤𝑡

.

But in the earlier definition of finite automata by Kleene (1951), h(𝑡 ) was
defined by an arbitrary function of h(𝑡−1) and 𝑤𝑡 . So, in our pangram example,

we can now decree that h(𝑡 )𝑞f = 1 iff h(𝑡−1)+a = h(𝑡−1)+b = h(𝑡−1)+c = 1 and 𝑤𝑡 = EOS.
The automaton shown above, with only 𝑂 ( |Σ|) states, now works.

Technically, Kleene’s definition doesn’t make automata any more powerful,

but it does mean that they can do a lot more with the same number of states. Any

automaton under Kleene’s definition can be converted to an equivalent DFA, but

it might have exponentially more states.

2.5.2 . . .to recurrent neural networks
Nowwe dig further back into history to neural net(work)s, whichwere introduced
byMcCulloch and Pitts (1943).They can be thought of as yet another choice of the

recurrence for h; Kleene gave his definition of finite automata as a generalization

of McCulloch–Pitts neural networks.
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Just as we previously numbered all the states, so nowwe number the symbols

in Σ, starting from 1. The ordering is completely arbitrary. For example, if Σ =

{BOS, a, b, EOS}, we could number them: BOS = 1, a = 2, b = 3, EOS = 4. If the

input string is 𝑤 = 𝑤1 · · ·𝑤𝑇 , define a sequence of vectors x(0) , x(1) , . . . , x(𝑇 ) .
Each vector x(𝑡 ) (for 𝑡 > 0) encodes 𝑤𝑡 as a one-hot vector, which means that

x(𝑡 ) is a vector with all 0’s except for a 1 corresponding to𝑤𝑡 . Also, x(0) encodes
BOS. For example, if𝑤 = aba EOS, then the input vectors would be

x(0) =


1

0

0

0

 x(1) =


0

1

0

0

 x(2) =


0

0

1

0

 x(3) =


0

1

0

0

 x(4) =


0

0

0

1

 .
A McCulloch–Pitts neural network is defined as follows:

h(−1) = 0 (2.11)

h(𝑡 ) = I
[
Ah(𝑡−1) + Bx(𝑡 ) + c ≥ 0

]
𝑡 = 0, . . . ,𝑇 (2.12)

where

A ∈ Z𝑑×𝑑 (2.13)

B ∈ Z𝑑×|Σ | (2.14)

c ∈ Z𝑑 (2.15)

In our pangram example, we wanted to let h(𝑡 )𝑞f = 1 iff h(𝑡−1)+a = h(𝑡−1)+b =

h(𝑡−1)+c = 1 and 𝑤𝑡 = EOS. Can we do this in a McCulloch–Pitts neural network?

Yes, if we set:

A𝑞f,+a = 1

A𝑞f,+b = 1

A𝑞f,+c = 1

B𝑞f,EOS = 1

c = −4

The components ofA,B, and c are the parameters of themodel. Aswewill see,

we will learn parameter values by gradient ascent, which maximizes a function

by climbing uphill. But the step function, I[· ≥ 0], is not so good for climbing.

In a so-called simple or Elman recurrent neural network (Elman, 1990), the step

function, I[· ≥ 0], is replaced with the sigmoid function,

sigmoid(𝑧) = 1

1 + exp(−𝑧)

which is a smooth version of the step function (see Figure 2.1).

See Figure 2.2 for a picture of an RNN. From the one-hot vectors x(𝑡 ) , the
RNN computes a sequence of vectors:

h(−1) = 0 (2.16)

h(𝑡 ) = sigmoid(Ah(𝑡−1) + Bx(𝑡 ) + c) 𝑡 = 0, . . . ,𝑇 (2.17)
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0

0.5

1

−10 −5 0 5 10

0

0.5

1

(a) step (b) sigmoid

Figure 2.1: The step function (a) is 0 for negative values and 1 for positive values,

while the sigmoid function (b) is 0 for very negative values, 1 for very positive

values, and smooth in between.

h(0)

y(1)

x(0)

h(1)

y(2)

x(1)

h(2)

y(3)

x(2)

h(3)

y(4)

x(3)

Figure 2.2: A simple RNN, shown for a string of length 𝑇 = 4 (including EOS).
Each rectangle is a vector that is either input to or computed by the network.
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where

A ∈ R𝑑×𝑑 (2.18)

B ∈ R𝑑×|Σ | (2.19)

c ∈ R𝑑 (2.20)

are parameters of the model, which will be learned during the training process,

as described in Section 2.5.4.

At each time step, the RNN makes a prediction about the next symbol:

y(𝑡 ) = softmax(Dh(𝑡−1) + e) 𝑡 = 1, . . . ,𝑇 (2.21)

where

D ∈ R |Σ |×𝑑 (2.22)

e ∈ R |Σ | (2.23)

are more parameters of the model. See Section 1.6 for a definition of the softmax

function. The vector y(𝑡 ) is a probability distribution over Σ, that is, we estimate

𝑃 (𝑤𝑡 | 𝑤1 · · ·𝑤𝑡−1) ≈ y(𝑡 )𝑤𝑡
= x(𝑡 ) · y(𝑡 ) .

Since each x(𝑡 ) is a one-hot vector, dotting it with another vector selects a single

component from that other vector, which in this case is the probability of𝑤𝑡 .

For example, if after reading𝑤1 = a, we have

y(2) =

0.6

0.2

0.4

 ,
that means

𝑃 (𝑤2 = a | 𝑤1 = a) = 0.6

𝑃 (𝑤2 = b | 𝑤1 = a) = 0.2

𝑃 (𝑤2 = EOS | 𝑤1 = a) = 0.4.

Simple RNNs are certainly not the only kinds of RNNs; the RNNs most com-

monly used in NLP today are based on long-short term memory (LSTM) (Hochre-

iter and Schmidhuber, 1997).

2.5.3 Example
Figure 2.3 shows a run of a simple RNN with 30 hidden units trained on the Wall

Street Journal portion of the Penn Treebank, a common toy dataset for neural

language models. When we run this model on a new sentence, we can visualize

what each of its hidden units is doing at each time step. The units have been

sorted by how rapidly they change.

The first unit seems to be unchanging; maybe it’s useful for other units to

compute their values. The second unit is blue on the start symbol, then becomes
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Figure 2.3: Visualization of a simple RNN language model on English text.
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deeper and deeper red as the end of the sentence approaches. This unit seems

to be measuring the position in the sentence and/or trying to predict the end of

the sentence. The third unit is red for the first part of the sentence, usually the

subject, and turns blue for the second part, usually the predicate. The rest of the

units are unfortunately difficult to interpret. But we can see that the model is

learning something about the large-scale structure of a sentence, without being

explicitly told anything about sentence structure.

LSTM RNNs, which perform better than this simple RNN, have many more

units with interpretable functions on natural language (Karpathy, Johnson, and

Fei-Fei, 2016).

2.5.4 Training
We are given a set D of training sentences, each of which can be converted

into a sequence of vectors, x(1) , . . . , x(𝑇 ) . We write 𝜽 for the collection of all the

parameters of the model, flattened into a single vector: 𝜽 = (A,B, c,D, e). For
each training example and each time step 𝑡 , the RNN predicts the probability of

word𝑤𝑡 as a vector y(𝑡 ) .
During training, our goal is to find the parameter values that maximize the

log-likelihood,
1

𝐿(𝜽 ) = log

∏
𝑤∈D

𝑃 (𝑤 ;𝜽 ) (2.24)

=
∑︁
𝑤∈D

log 𝑃 (𝑤 ;𝜽 ) (2.25)

=
∑︁
𝑤∈D

𝑛∑︁
𝑡=1

x(𝑡 ) · log y(𝑡 ) . (2.26)

To maximize this function, there are lots of different methods. We’re going

to look at the easiest (but still very practical) method, stochastic gradient ascent.2

This algorithm goes back to the perceptron (Rosenblatt, 1958), which was a shal-

low trainable neural network, and the backpropagation algorithm (Rumelhart,

Hinton, andWilliams, 1986). Imagine that the log-likelihood is an infinite, many-

dimensional surface. Each point on the surface corresponds to a setting of 𝜽 , and
the altitude of the point is the log-likelihood for that setting of 𝜽 . We want to

find the highest point on the surface. We start at an arbitrary location and then

repeatedly move a little bit in the steepest uphill direction.

In pseudocode, gradient ascent looks like this:

initialize parameters 𝜽 randomly

repeat
𝜽 ← 𝜽 + 𝜂∇𝐿(𝜽 )

until done
1
Since “likelihood,” “log-likelihood,” and “loss function” all start with L, it’s common to write 𝐿

for all three. Here, it stands for “log-likelihood.”

2
If we’re minimizing a function, then we use stochastic gradient descent, and this is the name that

the method is more commonly known by.
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The randomness of the initialization is important, because there are many situ-

ations where if two parameters are initialized to the same value, they’ll always

have the same value and therefore be redundant.

The function ∇𝐿 is the gradient of 𝐿 and gives the direction, at 𝜽 , that goes
uphill the steepest.These days, it’s uncommon to need to figure out what the gra-

dient is by hand, because there are numerous automatic differentiation packages

that do this for you.

The learning rate 𝜂 > 0 controls how far wemove at each step. (What happens

if 𝜂 is too small? too big?) To guarantee convergence, 𝜂 should decrease over time

(for example,𝜂 = 1/𝑡 ), but it’s also common in practice to leave it fixed. See below

for another common trick.

In stochastic gradient ascent, we work on just one sentence at a time. Let

𝐿𝑤 (𝜽 ) be the log-likelihood of just one sentence, that is,

𝐿𝑤 (𝜽 ) = log 𝑃 (𝑤 ;𝜽 ) (2.27)

=

𝑛∑︁
𝑡=1

x(𝑡 ) · log y(𝑡 ) . (2.28)

It could be thought of as an approximation to the full log-likelihood 𝐿(𝜽 ). Then

stochastic gradient ascent goes like this:

initialize parameters 𝜽 to random numbers

repeat
for each sentence𝑤 do

𝜽 ← 𝜽 + 𝜂∇𝐿𝑤 (𝜽 )
end for

until done
Each pass through the training data is called an epoch. This method has several

advantages compared to full gradient ascent:

• Computing the gradient for one sentence uses much less memory.

• Updating the model after every sentence instead of waiting until the end

of the data means that the model can get better faster.

• The per-sentence log-likelihoods are only an approximation to the full log-

likelihood. This may seem like a disadvantage, because the updates can

temporarily take us in the wrong direction. But there’s some evidence that

this actually improves generalization.

2.5.5 Tricks
There are a number of tricks that are important for training well. This is not a

complete list, but these are the most essential and/or easiest tricks.

Validation. The above pseudocode doesn’t specify how to choose the learning

rate 𝜂 or when to stop. There are many ways to do this, but one tried-and-true

method is to look at the score (likelihood or some other metric) on held-out data

(also known as validation data). At the end of each epoch, run on the validation

data and compute the score. If it got worse, multiply the learning rate by
1

2
and
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continue. Usually, the validation score will start to go up again. If the learning

rate goes below some threshold (say, after a certain number of halvings), stop

training.

Shuffling. Because stochastic gradient ascent updates the model based on one

sentence at a time, it will have a natural tendency to remember the recent sen-

tencesmost. Tomitigate this effect, before each epoch, randomly shuffle the order

of the training sentences.

Gradient clipping. When using SGA on RNNs, a common problem is known

as the vanishing gradient problem and its evil twin, the exploding gradient prob-
lem. What happens is that 𝐿 is a a very long chain of functions (𝑛 times a con-

stant). When we differentiate 𝐿, then by the chain rule, the partial derivatives are

products of the partial derivatives of the functions in the chain. Suppose these

partial derivatives are small numbers (less than 1). Then the product of many of

them will be a vanishingly small number, and the gradient update will not have

very much effect. Or, suppose these partial derivatives are large numbers (greater

than 1). Then the product of many of them will explode into a very large number,

and the gradient update will be very damaging.This is definitely themore serious

problem, and preventing it is important. There are fancier learning methods than

SGA that alleviate this problem (currently, the most popular is probably Adam),

but for SGA, the simplest fix is gradient clipping: just check if the norm of the

gradient is bigger than 5, and if so, scale it so that its norm is just 5. The PyTorch

function torch.nn.utils.clip_grad_norm_ does this for you.

Minibatching. To speed up training and/or to reduce random variations be-

tween sentences, it’s standard to train on a small number (10–1000) of sentences

at a time instead of a single sentence at a time. If we can process the sentences

in one minibatch in parallel, we get a huge speedup. For example, if the model

contains the matrix-vector product Ah where A is a parameter matrix and h
is a vector that depends on the input sentence, then with minibatching, h be-

comes a matrix (one row for each sentence), and Ah can become a matrix-matrix

product, which is much faster than a bunch of matrix-vector products. You just

have to make sure that the indices match up correctly: hA⊤ or, in PyTorch, A@

h[:, :,None].
However, a major nuisance is that the sentences are all different lengths. The

typical solution goes like this:

• Sort all the sentences by length.

• Divide up the sentences into minibatches. Because of the sorting, each

minibatch contains sentences with similar lengths.

• In eachminibatch, equalize the lengths of sentences by appending a special

symbol PAD.

• When computing 𝐿, mask out the PAD symbols to avoid biasing the model

towards predicting PAD (not to mention wasting training time).

We do not expect you to implement minibatching in the homework assignments.
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2.6 Transformers? (not yet)
RNNs have largely been displaced by transformers (Vaswani et al., 2017). But

to introduce transformers, we are going to take a detour to the problem that

transformers were originally invented for, which is machine translation.
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