
Chapter 6

Syntax

Syntax, in linguistics, is the study of the structure of natural language sentences.

It is sometimes approached as an “autonomous” part of language, describing

what sentences are or aren’t grammatical, and sometimes approached as work-

ing together with semantics, describing the structure which is used to compute

the meaning of a sentence.

6.1 Why Syntax?
Syntax proposes that there is something more to a sentence than just the se-

quence of words. To get an idea of what that something is, let’s look at some

examples.

6.1.1 A quiz (not for credit)
For each pair of sentences, choose which one is better.

1. (a) I don’t like being made fun of.

(b) I don’t like being taken pictures of.

2. Who’d like some ice cream?

(a) I’d!

(b) I would!

3. (a) I saw a brown big spider.

(b) I saw a big brown spider.

4. (a) That movie was fan-freaking-tastic.

(b) That movie was fantas-freaking-tic.

5. (a) That’s the teacher that I couldn’t understand what he was talking

about.

(b) That’s the teacher that I couldn’t understand what was talking about.

66



Chapter 6. Syntax 67

6.1.2 Newspaper ambiguities
Consider the following example sentences, taken from newspaper articles.

1
What

exactly is going wrong in these sentences, and how can we hope to make com-

puters understand them?

(6.1) Two cars were reported stolen by the Groveton police yesterday.

(6.2) Mrs. Consigny was living alone in her home in Nakoma after her hus-

band died in 1954 when the phone rang.

(6.3) Black Panther leader Huey Newton, terming a 1974 murder charge

“strictly a fabrication,” said yesterday he will testify at his trial on

charges of killing a prostitute against his lawyer’s advice.

(6.4) Yoko Ono will talk about her husband John Lennon who was killed in

an interview with Barbara Walters.

6.1.3 Implementing subject-aux inversion
There are situations where we want computers to perform transformations on

text that seem to require knowledge of concepts like “subject” or “object” – for

example, machine translation. To keep thingsmonolingual, imagine that wewant

a computer to turn statements into questions. How would you write a program

to do this?

(6.5) a. The Pope is Catholic.

b. Is the Pope Catholic?

(6.6) a. Soylent Green is people.

b. Is Soylent Green people?

(6.7) a. Good fences make good neighbors.

b. Make good fences good neighbors?

c. Do good fences make good neighbors?

(6.8) a. A man who is his own lawyer has a fool for a client.

b. Is a man who his own lawyer has a fool for a client?

c. Does a man who is his own lawyer have a fool for a client?

6.1.4 Tests for constituency
To formulate a rule to do the above, we impose a tree structure on sentences, in

which the leaves of the tree are words. (There’s an alternative kind of structure,

called dependency trees, in which the internal nodes are also words.) The sub-

string spanned by a node of the tree is called a constituent, and since we can’t see
constituents, linguists have developed various tests for constituency:

Can you move it around?

1http://www.ling.upenn.edu/∼beatrice/humor/newspaper-screwups.html
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(6.9) Fences make, good good neighbors.

(6.10) Make good, good fences neighbors.

(6.11) Good neighbors, good fences make.

(6.12) Fences make good, good neighbors.

(6.13) Make good neighbors, good fences.

Can you replace it with something like a pronoun?

(6.14) They make good neighbors.

(6.15) Good they good neighbors.

(6.16) Good fences it/they/. . . neighbors.

(6.17) Good fences make them.

(6.18) They good neighbors.

(6.19) Good it/they/. . . neighbors.

(6.20) Good fences do.

Can it participate in a cleft?

(6.21) It’s good fences that make good neighbors.

(6.22) It’s fences make that good good neighbors.

(6.23) It’s make good that good fences neighbors.

(6.24) It’s good neighbors that good fences make.

(6.25) It’s good fences make that [do] good neighbors.

(6.26) It’s make good neighbors that good fences do.

Can it be the answer to a question?

(6.27) What makes good neighbors? Good fences.

(6.28) Good what good neighbors? Fences make.

(6.29) Good fences what neighbors? Make good.

(6.30) Good fences make what? Good neighbors.

(6.31) What [do] good neighbors? Good fences make.

(6.32) Good fences do what? Make good neighbors.
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6.2 Context Free Grammars

6.2.1 Why, what’s wrong with finite automata?
We have spent a long time talking about all the things that finite automata can

do, but there are important things that they can’t do. For example, they cannot

generate the language

𝐿 = {a𝑛b𝑛 | 𝑛 ≥ 0} (6.33)

Linguistically, the analogous property that finite automata are missing is the

ability to do center-embedding. English allows sentences like:

(6.34) The motorcyle rusted.

(6.35) The motorcycle that the guy rode rusted.

(6.36) The motorcycle that the guy that my sister married rode rusted.

At minimum, we need the number of noun phrases to equal the number of verbs,

which we have already seen finite automata aren’t able to do. Actually, we want

to be able to create a structure like

(6.37) S

VP

VBD

rusted

NP

SBAR

S

VP

VBD

rode

NP

SBAR

S

VP

VBD

married

NP

NN

sister

PRP$

my

IN

that

NP

NN

guy

DT

the

IN

that

NP

NN

motorcycle

DT

the

which can tell us which noun corresponds to which verb. Later, we will see how

this structure is also useful for translating into another language like Japanese

or Hindi.

Question 1. The above argument holds only if you believe that unbounded cen-

ter embedding is possible. In fact, center-embedding examples degrade rather

quickly as more levels are added:
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(6.38) The cheese lay in the house that Jack built.

(6.39) The cheese that the rat ate lay in the house that Jack built.

(6.40) The cheese that the rat that the cat killed ate lay in the house that Jack

built.

(6.41) The cheese that the rat that the cat that the dog worried killed ate lay

in the house that Jack built.

...

(6.42) The cheese that the rat that the cat that the dog that the cow with the

crumpled horn that the maiden all forlorn that the man all tattered and

torn that the priest all shaven and shorn that the rooster that crowed in

the morn that the farmer sowing his corn that the horse and the hound

and the horn belonged to kept wokemarried kissedmilked tossed wor-

ried killed ate lay in the house that Jack built.

If center embedding is bounded (say, to three levels), then how would you write

a finite automaton to model it? What would still be unsatisfactory about such an

account?

6.2.2 Context free grammars
Our solution is to use context free grammars (CFGs). CFGs are also widely used

in compilers, where they are known as Backus-Naur Form. We begin with two

examples of CFGs. The first one generates the non-finite-state language {a𝑛b𝑛 |
𝑛 ≥ 0}:

S→ aSb

S→ 𝜖
(6.43)

Here, S is called a nonterminal symbol and can be rewritten using one of the

above rules, whereas a and b are called terminal symbols and cannot be rewritten.
This is how the grammar works: start with a single S, then repeatedly choose the

leftmost nonterminal and rewrite it using one of the rules until there are no more

nonterminals. For example:

S⇒ aSb

⇒ aaSbb

⇒ aaaSbbb

⇒ aaabbb

(6.44)
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Figure 6.1: Formal Languages. [audience looks around] ‘What just happened?’

‘There must be some context we’re missing.’

Our next example generates sentences (6.34), (6.35), and (6.36).

S→ NP VP

NP→ DT NN

NP→ PRP$ NN

NP→ NP SBAR

VP→ VBD

SBAR→ IN S

DT→ the

PRP$→ my

NN→ motorcycle | guy | sister
VBD→ married | rode | rusted
IN→ that

(6.45)

Here, the uppercase symbols are nonterminal symbols, and the English words

are terminal symbols. Also, we have used some shorthand: 𝐴 → 𝛽1 | 𝛽2 stands
for two rules, 𝐴→ 𝛽1 and 𝐴→ 𝛽2.

Question 2. How would you use the above grammar to derive sentence (6.35)?

Here’s a more formal definition of CFGs.

Definition 1. A context-free grammar is a tuple 𝐺 = (𝑁, Σ, 𝑅, 𝑆), where

• 𝑁 is a set of nonterminal symbols

• Σ is a set of terminal symbols

• 𝑅 is a set of rules or productions of the form 𝐴 → 𝛽 , where 𝐴 ∈ 𝑁 and

𝛽 ∈ (𝑁 ∪ Σ)∗

• 𝑆 ∈ 𝑁 is a distinguished start symbol
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If 𝐴 ∈ 𝑁 and 𝛼, 𝛽,𝛾 ∈ (𝑁 ∪ Σ)∗, we write 𝛼𝐴𝛾 ⇒𝐺 𝛼𝛽𝛾 iff (𝐴 → 𝛽) ∈ 𝑅,

and we write⇒∗
𝐺
for the reflexive, transitive closure of⇒𝐺 . Then the language

generated by 𝐺 is 𝐿(𝐺) = {𝑤 ∈ Σ∗ | 𝑆 ⇒∗
𝐺
𝑤}.

6.2.3 Structure and ambiguity
As has already been alluded to, CFGs are interesting not only because they can

generate more string languages than finite automata can, but because they build

trees, known as syntactic analyses, phrase-structure trees, or parse trees. Whenever

we use a rule 𝐴→ 𝛽 to rewrite a nonterminal 𝐴, we don’t erase 𝐴 and replace it

with 𝛽 ; instead, we make the symbols of 𝛽 the children of 𝐴.

Question 3. What would the tree for sentence (6.35) be?

One of the main purposes of these trees is that every subtree of the parse

tree is supposed to have a semantics or meaning, so that the tree shows how

to interpret the sentence. As a result, it is possible that a single string can have

more than one structure, and therefore more than one meaning. This is called

ambiguity. To illustrate it, we need a new example.

S→ NP VP

NP→ DT NN

NP→ NN

NP→ NN NNS

VP→ VBP NP

VP→ VBP

VP→ VP PP

PP→ IN NP

DT→ a | an
NN→ time | fruit | arrow | banana
NNS→ flies

VBP→ flies | like
IN→ like

(6.46)

This grammar generates (among others) the following two strings:

(6.47) Time flies like an arrow.

(6.48) Fruit flies like a banana.

Their “natural” structures are:
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(6.49)

S

VP

PP

NP

NN

arrow

DT

an

IN

like

VP

VBP

flies

NP

NN

time

(6.50)

S

VP

NP

NN

banana

DT

a

VBP

like

NP

NNS

flies

NN

fruit

But the grammar also allows other structures, which would lead to other mean-

ings:

(6.51)

S

VP

NP

NN

arrow

DT

an

VBP

like

NP

NNS

flies

NN

time

(6.52)

S

VP

PP

NP

NN

banana

DT

a

IN

like

VP

VBP

flies

NP

NN

fruit

Interpretation (6.51) says that a certain kind of fly, the time fly, is fond of

arrows. Interpretation (6.52) says that fruits generally fly in the same way that

bananas fly.

Question 4. The English word buffalo has two meanings: it can be a noun (the

name of several species of oxen) or a verb (to overpower, overawe, or constrain

by superior force or influence; to outwit, perplex). Also, the plural of the noun

buffalo is buffalo. Therefore, the following strings are all grammatical:

(6.53) Buffalo! (Overpower!)

(6.54) Buffalo buffalo. (Oxen overpower.)

(6.55) Buffalo buffalo buffalo. (Oxen overpower oxen.)
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(6.56) Buffalo buffalo buffalo buffalo. (Oxen that overpower oxen, overpower.)

In fact, the entire set {buffalo𝑛 | 𝑛 ≥ 1} is a subset of English. Can you write a

CFG that generates it according to English grammar? Hint: here is a tree for the

fourth example:

(6.57) S

VP

VBP

buffalo

NP

SBAR

S

VP

VBP

buffalo

NP

NNS

buffalo

IN

𝜖

NP

NNS

buffalo

How many structures can you find for the following sentence:

(6.58) Buffalo buffalo buffalo buffalo buffalo.

6.2.4 Weighted context free grammars
Weighted CFGs are a straightforward extension of CFGs. Recall that FSTs map an

input string to a set of possible output strings, whereas weighted FSTs give us a

distribution over possible output strings. In the same way, weighted CFGs help

us deal with ambiguity (a single string having multiple structures) by giving us

a distribution over possible structures.

In a weighted CFG, every production has a weight attached to it, which we

write as

𝐴
𝑝
−→ 𝛽

The weight of a derivation is the product of the weights of the rules used in

the derivation (if a rule is used 𝑘 times, we multiply its weight in 𝑘 times).
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Thus we can take our grammar from last time and add weights:

S

1−→ NP VP

NP

0.5−−→ DT NN

NP

0.4−−→ NN

NP

0.1−−→ NN NNS

VP

0.6−−→ VBP NP

VP

0.3−−→ VBP

VP

0.1−−→ VP PP

PP

1−→ IN NP

DT

0.5−−→ a

DT

0.5−−→ an

NN

0.25−−−→ time

NN

0.25−−−→ fruit

NN

0.25−−−→ arrow

NN

0.25−−−→ banana

NNS

1−→ flies

VBP

0.5−−→ flies

VBP

0.5−−→ like

IN

1−→ like

(6.59)

Question. What would the weight of these two derivations be?

S

VP

PP

NP

NN

arrow

DT

an

IN

like

VP

VBP

flies

NP

NN

time

S

VP

NP

NN

arrow

DT

an

VBP

like

NP

NNS

flies

NN

time

A probabilistic CFG or PCFG is one in which the probabilities of all rules with

a given left-hand side sum to one (Booth andThompson, 1973). A PCFG is called

consistent if the probabilities of all derivations sum to one.

Aren’t all PCFGs consistent? Actually, no:

S

0.9−−→ SS (6.60)

S

0.1−−→ a (6.61)

Let 𝑃𝑛 be the total weight of trees of height ≤ 𝑛. Thus

𝑃1 = 0.1 (6.62)

𝑃𝑛+1 = 0.9𝑃2

𝑛 + 0.1 (6.63)
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The second equation is because a tree of height ≤ 𝑛 + 1 can either be a tree of

height 1, formed using rule (6.61), or a tree formed using rule (6.60) and two

trees of height ≤ 𝑛. The limit 𝑃 = lim𝑛→∞ 𝑃𝑛 must be a fixed point of the second

equation. There are two fixed points: 𝑃 = 0.9𝑃2 + 0.1 ⇒ 𝑃 = 1

9
or 1. But note

that 𝑃1 <
1

9
, and 𝑃𝑖 <

1

9
⇒ 𝑃𝑖+1 <

1

9
. Since the sequence is always less than

1

9
, it

cannot converge to 1. Therefore, 𝑃 = 1

9
!

Question. What happened to the other
8

9
?

6.3 Parsing Algorithms
Next, we explore the parsing problem, which encompasses several questions, in-

cluding:

• Does 𝐿(𝐺) contain𝑤?

• What is the highest-weight derivation of𝑤?

• What is the set of all derivations of𝑤?

6.3.1 Chomsky normal form
Let’s assume that𝐺 has a particularly simple form.We say that a CFG is in Chom-
sky normal form if each of its productions has one of the following forms:

𝑋 → 𝑌𝑍

𝑋 → 𝑎

It can be shown (see below) that any context-free grammar not generating a

language containing 𝜖 can be converted into Chomsky normal form, and still

generate the same language.

Our grammar from above can be massaged to be in Chomsky normal form:

S→ NP VP

NP→ DT NN

NP→ time | fruit
NP→ NN NNS

VP→ VBP NP

VP→ flies

VP→ VP PP

PP→ IN NP

DT→ a | an
NN→ time | fruit | arrow | banana
NNS→ flies

VBP→ like

IN→ like

(6.64)
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6.3.2 The CKY algorithm
The CKY algorithm is named after three people who independently invented it:

Cocke, Kasami, and Younger, although it has been rediscovered more times than

that.

In its most basic form, the algorithm just decides whether𝑤 ∈ 𝐿(𝐺). It builds
a data structure known as a chart; it is an𝑛×𝑛 array.The element chart[𝑖, 𝑗] is a set
of nonterminal symbols. If 𝑋 ∈ chart[𝑖, 𝑗], then that means we have discovered

that 𝑋 ⇒∗ 𝑤𝑖+1 · · ·𝑤 𝑗 .

Require: string𝑤 = 𝑤1 · · ·𝑤𝑛 and grammar 𝐺 = (𝑁, Σ, 𝑅, 𝑆)
Ensure: 𝑤 ∈ 𝐿(𝐺) iff 𝑆 ∈ chart[0, 𝑛]
1: initialize chart[𝑖, 𝑗] ← ∅ for all 0 ≤ 𝑖 < 𝑗 ≤ 𝑛

2: for all 𝑖 ← 1, . . . , 𝑛 and (𝑋 → 𝑤𝑖 ) ∈ 𝑅 do
3: chart[𝑖 − 1, 𝑖] ← chart[𝑖 − 1, 𝑖] ∪ {𝑋 }
4: end for
5: for ℓ ← 2, . . . , 𝑛 do
6: for 𝑖 ← 0, . . . , 𝑛 − ℓ do
7: 𝑗 ← 𝑖 + ℓ
8: for 𝑘 ← 𝑖 + 1, . . . , 𝑗 − 1 do
9: for all (𝑋 → 𝑌𝑍 ) ∈ 𝑅 do
10: if 𝑌 ∈ chart[𝑖, 𝑘] and 𝑍 ∈ chart[𝑘, 𝑗] then
11: chart[𝑖, 𝑗] ← chart[𝑖, 𝑗] ∪ {𝑋 }
12: end if
13: end for
14: end for
15: end for
16: end for

Question 5. What is the time and space complexity of this algorithm?

Question 6. Using the grammar (6.64), run the CKY algorithm on the string:

0 time 1 flies 2 like 3 an 4 arrow 5
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0,1 0,2 0,3 0,4 0,5

1,2 1,3 1,4 1,5

2,3 2,4 2,5

3,4 3,5

4,5

6.3.3 Viterbi CKY
But it is much more useful to find the highest-weight parse. Suppose that our

grammar has the following probabilities:

S

1−→ NP VP

NP

0.5−−→ DT NN

NP

0.2−−→ time

NP

0.2−−→ fruit

NP

0.1−−→ NN NNS

VP

0.6−−→ VBP NP

VP

0.3−−→ flies

VP

0.1−−→ VP PP

PP

1−→ IN NP

DT

0.5−−→ a

DT

0.5−−→ an

NN

0.25−−−→ time

NN

0.25−−−→ fruit

NN

0.25−−−→ arrow

NN

0.25−−−→ banana

NNS

1−→ flies

VBP

1−→ like

IN

1−→ like

(6.65)

Thenwe use a modification of CKY that is analogous to the Viterbi algorithm.

First, we modify the algorithm to find the maximum weight:
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Require: string𝑤 = 𝑤1 · · ·𝑤𝑛 and grammar 𝐺 = (𝑁, Σ, 𝑅, 𝑆)
Ensure: best[0, 𝑛] [𝑆] is the maximum weight of a parse of𝑤

1: initialize best[𝑖, 𝑗] [𝑋 ] ← 0 for all 0 ≤ 𝑖 < 𝑗 ≤ 𝑛,𝑋 ∈ 𝑁
2: for all 𝑖 ← 1, . . . , 𝑛 and (𝑋

𝑝
−→ 𝑤𝑖 ) ∈ 𝑅 do

3: best[𝑖 − 1, 𝑖] [𝑋 ] ← max{best[𝑖 − 1, 𝑖] [𝑋 ], 𝑝}
4: end for
5: for ℓ ← 2, . . . , 𝑛 do
6: for 𝑖 ← 0, . . . , 𝑛 − ℓ do
7: 𝑗 ← 𝑖 + ℓ
8: for 𝑘 ← 𝑖 + 1, . . . , 𝑗 − 1 do
9: for all (𝑋

𝑝
−→ 𝑌𝑍 ) ∈ 𝑅 do

10: 𝑝′ ← 𝑝 × best[𝑖, 𝑘] [𝑌 ] × best[𝑘, 𝑗] [𝑍 ]
11: best[𝑖, 𝑗] [𝑋 ] ← max{best[𝑖, 𝑗] [𝑋 ], 𝑝′}
12: end for
13: end for
14: end for
15: end for

Question 7. Do you see how to modify the algorithm to compute the total
weight of all parses of𝑤?

A slight further modification lets us find the maximum-weight parse itself.

Just as in the Viterbi algorithm for FSAs, whenever we update best[𝑖, 𝑗] [𝑋 ] to
a new best weight, we also need to store a back-pointer that records how we

obtained that weight. We will represent back-pointers like this: 𝑋𝑖, 𝑗 → 𝑌𝑖,𝑘𝑍𝑘,𝑗

means that we built an 𝑋 spanning 𝑖, 𝑗 from a 𝑌 spanning 𝑖, 𝑘 and a 𝑍 spanning

𝑘, 𝑗 .

Require: string𝑤 = 𝑤1 · · ·𝑤𝑛 and grammar 𝐺 = (𝑁, Σ, 𝑅, 𝑆)
Ensure: 𝐺 ′ generates the best parse of𝑤
Ensure: best[0, 𝑛] [𝑆] is its weight
1: for all 0 ≤ 𝑖 < 𝑗 ≤ 𝑛,𝑋 ∈ 𝑁 do
2: initialize best[𝑖, 𝑗] [𝑋 ] ← 0

3: initialize back[𝑖, 𝑗] [𝑋 ] ← nil

4: end for
5: for all 𝑖 ← 1, . . . , 𝑛 and (𝑋

𝑝
−→ 𝑤𝑖 ) ∈ 𝑅 do

6: if 𝑝 > best[𝑖 − 1, 𝑖] [𝑋 ] then
7: best[𝑖 − 1, 𝑖] [𝑋 ] ← 𝑝

8: back[𝑖 − 1, 𝑖] [𝑋 ] ← (𝑋𝑖−1,𝑖 → 𝑤𝑖 )
9: end if
10: end for
11: for ℓ ← 2, . . . , 𝑛 do
12: for 𝑖 ← 0, . . . , 𝑛 − ℓ do
13: 𝑗 ← 𝑖 + ℓ
14: for 𝑘 ← 𝑖 + 1, . . . , 𝑗 − 1 do
15: for all (𝑋

𝑝
−→ 𝑌𝑍 ) ∈ 𝑅 do

16: 𝑝′ ← 𝑝 × best[𝑖, 𝑘] [𝑌 ] × best[𝑘, 𝑗] [𝑍 ]
17: if 𝑝′ > best[𝑖, 𝑗] [𝑋 ] then
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18: best[𝑖, 𝑗] [𝑋 ] ← 𝑝′

19: back[𝑖, 𝑗] [𝑋 ] ← (𝑋𝑖, 𝑗 → 𝑌𝑖,𝑘𝑍𝑘,𝑗 )
20: end if
21: end for
22: end for
23: end for
24: end for
25: 𝐺 ′ = {back[𝑖, 𝑗] [𝑋 ] | 0 ≤ 𝑖 < 𝑗 ≤ 𝑛,𝑋 ∈ 𝑁 }

𝐺 ′ is then a grammar that generates at most one tree, the best tree for𝑤 .

Question 8. Using the grammar (6.65), run the Viterbi CKY algorithm on the

same string:

0 time 1 flies 2 like 3 an 4 arrow 5

0,1 0,2 0,3 0,4 0,5

1,2 1,3 1,4 1,5

2,3 2,4 2,5

3,4 3,5

4,5
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Partial solution. Cell (0, 5) is missing.

0,1

NP/0.2/NP→ time

NN/0.25/NN→ time

0,2

S/0.06/S→ NP
1
VP

NP/0.025/NP→ NN
1
NNS

0,3

∅
0,4

∅
0,5

1,2

VP/0.3/VP→ flies

NNS/1/NNS→ flies

1,3

∅
1,4

∅
1,5

VP/0.001875/VP→ VP
2
PP

2,3

VBP/1/VBP→ like

IN/1/IN→ like

2,4

∅
2,5

VP/0.0375/VP→ VBP
3
NP

PP/0.0625/PP→ IN
3
NP

3,4

DT/0.5/IN→ an

3,5

NP/0.0625/NP→ DT
4
NN

4,5

NN/0.25/NN→ arrow

6.3.4 Parsing general CFGs
Previously, we learned about PCFGs, and how to find the best PCFG derivation

of a string using the Viterbi algorithm. Now we will extend those algorithms to

the general CFG case.

Binarization

It turns out that any CFG (whose language does not contain 𝜖) can be converted

into an equivalent grammar in Chomsky normal form.

To guarantee that 𝑘 ≤ 2, we must eliminate all rules with right-hand side

longer than 2.Wewill see below that the grammars we extract from training data

may already have this property. But if not, we need to binarize the grammar. For

example, suppose we have the production

NP→ DT JJS NN NN PP (6.66)

which is too long to be in Chomsky normal form. There are many ways to break

this down into smaller rules, but here is one way. We create a bunch of new
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nonterminal symbols NP(𝛽) where 𝛽 is a string of nonterminal symbols; this

stands for a partial NP whose sisters to the left are 𝛽 . Then we replace rule (6.66)

with:

NP→ DT NP(DT) (6.67)

NP(DT)→ JJS NP(DT,JJS) (6.68)

NP(DT,JJS)→ NN NP(DT,JJS,NN) (6.69)

NP(DT,JJS,NN)→ NN NP(DT,JJS,NN,NN) (6.70)

NP(DT,JJS,NN,NN)→ PP (6.71)

Note that the annotations contain enough information to reverse the binariza-

tion. So the binarized grammar is equivalent to the unbinarized grammar, but

has 𝑘 ≤ 2.

Parsing with unary rules

But we are not done yet. CKY does not just require 𝑘 ≤ 2, but also forbids rules

of any of the following forms:

𝐴→ 𝑎𝑏 (6.72)

𝐴→ 𝑎𝐵 (6.73)

𝐴→ 𝐴𝑏 (6.74)

𝐴→ 𝜖 (6.75)

𝐴→ 𝐵 (6.76)

The first three cases are very easy to eliminate, but we never see them in gram-

mars induced from the Penn Treebank. Nullary rules (6.75) are not hard to elim-

inate (Hopcroft and Ullman, 1979), but the weighted case can be nasty (Stolcke,

1995). Fortunately, nullary rules aren’t very common in practice, so we won’t

bother with them here.

Unary rules (6.76) are quite common and annoying. Like nullary rules, they

are not hard to eliminate from a CFG (Hopcroft and Ullman, 1979), but in prac-

tice, most people don’t try to; instead, they extend the CKY algorithm to handle

them directly. The extension shown below is not the most efficient, but fits most

naturally with the way we have implemented CKY.

Require: string𝑤 = 𝑤1 · · ·𝑤𝑛 and grammar 𝐺 = (𝑁, Σ, 𝑅, 𝑆)
Ensure: 𝑤 ∈ 𝐿(𝐺) iff 𝑆 ∈ chart[0, 𝑛]
1: initialize chart[𝑖, 𝑗] ← ∅ for all 0 ≤ 𝑖 < 𝑗 ≤ 𝑛

2: for all 𝑖 ← 1, . . . , 𝑛 and (𝑋 → 𝑤𝑖 ) ∈ 𝑅 do
3: chart[𝑖 − 1, 𝑖] ← chart[𝑖 − 1, 𝑖] ∪ {𝑋 }
4: end for
5: for ℓ ← 2, . . . , 𝑛 do
6: for 𝑖 ← 0, . . . , 𝑛 − ℓ do
7: 𝑗 ← 𝑖 + ℓ
8: for 𝑘 ← 𝑖 + 1, . . . , 𝑗 − 1 do
9: for all (𝑋 → 𝑌𝑍 ) ∈ 𝑅 do
10: if 𝑌 ∈ chart[𝑖, 𝑘] and 𝑍 ∈ chart[𝑘, 𝑗] then
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11: chart[𝑖, 𝑗] ← chart[𝑖, 𝑗] ∪ {𝑋 }
12: end if
13: end for
14: end for
15: again← true
16: while again do
17: again← false
18: for all (𝑋 → 𝑌 ) ∈ 𝑅 do
19: if 𝑋 ∉ chart[𝑖, 𝑗] and 𝑌 ∈ chart[𝑖, 𝑗] then
20: chart[𝑖, 𝑗] ← chart[𝑖, 𝑗] ∪ {𝑋 }
21: again← true
22: end if
23: end for
24: end while
25: end for
26: end for

The new part is lines 15–24 and is analogous to the binary rule case.

Question. Why is the while loop on line 16 necessary? What is its maximum

number of iterations?

Finally, let’s put together weights (Viterbi CKY) and unary rules:

Require: string𝑤 = 𝑤1 · · ·𝑤𝑛 and grammar 𝐺 = (𝑁, Σ, 𝑅, 𝑆)
Ensure: 𝐺 ′ generates the best parse of𝑤
Ensure: best[0, 𝑛] [𝑆] is its weight
1: for all 0 ≤ 𝑖 < 𝑗 ≤ 𝑛,𝑋 ∈ 𝑁 do
2: initialize best[𝑖, 𝑗] [𝑋 ] ← 0

3: initialize back[𝑖, 𝑗] [𝑋 ] ← nil

4: end for
5: for all 𝑖 ← 1, . . . , 𝑛 and (𝑋

𝑝
−→ 𝑤𝑖 ) ∈ 𝑅 do

6: if 𝑝 > best[𝑖 − 1, 𝑖] [𝑋 ] then
7: best[𝑖 − 1, 𝑖] [𝑋 ] ← 𝑝

8: back[𝑖 − 1, 𝑖] [𝑋 ] ← (𝑋𝑖−1,𝑖 → 𝑤𝑖 )
9: end if
10: end for
11: for ℓ ← 2, . . . , 𝑛 do
12: for 𝑖 ← 0, . . . , 𝑛 − ℓ do
13: 𝑗 ← 𝑖 + ℓ
14: for 𝑘 ← 𝑖 + 1, . . . , 𝑗 − 1 do
15: for all (𝑋

𝑝
−→ 𝑌𝑍 ) ∈ 𝑅 do

16: 𝑝′ ← 𝑝 × best[𝑖, 𝑘] [𝑌 ] × best[𝑘, 𝑗] [𝑍 ]
17: if 𝑝′ > best[𝑖, 𝑗] [𝑋 ] then
18: best[𝑖, 𝑗] [𝑋 ] ← 𝑝′

19: back[𝑖, 𝑗] [𝑋 ] ← (𝑋𝑖, 𝑗 → 𝑌𝑖,𝑘𝑍𝑘,𝑗 )
20: end if
21: end for
22: end for
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23: again← true
24: while again do
25: again← false
26: for all (𝑋

𝑝
−→ 𝑌 ) ∈ 𝑅 do

27: 𝑝′ ← 𝑝 × best[𝑖, 𝑗] [𝑌 ]
28: if 𝑝′ > best[𝑖, 𝑗] [𝑋 ] then
29: best[𝑖, 𝑗] [𝑋 ] = 𝑝′

30: back[𝑖, 𝑗] [𝑋 ] ← (𝑋𝑖, 𝑗 → 𝑌𝑖, 𝑗 )
31: again← true
32: end if
33: end for
34: end while
35: end for
36: end for
37: 𝐺 ′ ← extract(𝑆, 0, 𝑛)

If the grammar has unary cycles in it, that is, it is possible to derive 𝑋 ⇒
. . . ⇒∗ 𝑋 , then certain complications can arise from the fact that a string may

have an infinite number of derivations. In particular, if the weight of the cycle is

greater than 1, then the Viterbi CKY algorithmwill break. Even if all rule weights

are less than 1, some algorithms require modification; for example, if we want

to find the total weight of all the derivations of a string, we have to perform an

infinite summation (Stolcke, 1995). Therefore, it is fairly common to implement

hacks of various kinds to break the cycles. For example, we could modify the

grammar so that it goes round the cycle at most five times.

Question 9. Why doesn’t the Viterbi CKY algorithm break on unary cycles if

we assume that all rule weights are less than 1?

6.4 Neural Parsing
The literature on parsing can be divided into dependency parsing and constituency
parsing.The former is probablymorewidespread, but we’re focusing on the latter.

Neural constituency parsing models can be further divided into models that are

(loosely) based on pushdown automata (PDAs) and models that are based on

context-free grammars.

6.4.1 Stack-based approaches
These approaches treat trees as sequences of symbols and use some kind of stack

to ensure that the sequence is well-formed. I give just one example, which is to

train a neural language model on trees represented as bracketed strings (Vinyals

et al., 2015; Choe and Charniak, 2016). For example,
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S

VP

VP

NP

NN

glass

VB

eat

MD

can

NP

PRP

I

would become something like

[S [NP [PRP I PRP] NP] [VP [MD can MD] [VP [VB eat VB] [NP [NN glass NN] NP] VP] VP] S]

To parse, we search among flattened trees for the one which has the highest

probability according to the language model. This is an intractable search, but

we can make it practical using beam search, in which at each time step we keep

only the top 𝑘 possibilities.

The neural language model is a RNN. I’m not aware of approaches that use

Transformer language models, but that would certainly be possible.

6.4.2 Grammar-based approaches
Another approach is to use a weighted CFG, but to compute the weights of the

CFG using a neural network. Suppose that the probability of a tree is still

𝑃 (tree) =
∏

(𝐴→𝛽 ) ∈tree
𝑃 (𝐴→ 𝛽)

but imagine that 𝑃 (𝐴 → 𝛽) is computed by a neural network, in the hopes that

it can learn better probabilities than relative frequency estimation (𝑃 (𝐴→ 𝛽) =
𝑐 (𝐴 → 𝛽)/𝑐 (𝐴)). However, relative-frequency estimation is already guaranteed

to maximize the likelihood of the training data, so it’s not possible to do better!

The onlyway to improve themodel is to let the rule scores depend on information

outside the rule itself.

For example, maybe a rule probability could depend on the rest of the words

in the sentence. This doesn’t make sense mathematically, because words depend

on the rules, so it’s circular for the rules to depend on the words.
2

Theway out is to change from a generativemodel, that is, amodel of 𝑃 (tree,𝑤)
to a discriminative model, that is, a model of 𝑃 (tree | 𝑤). Since the tree now de-

pends on the words, instead of the other way around, any rule can depend on

any of the words in the sentence.

2
Although, admittedly, it worked pretty well when I tried it. Something similar happens in the

hybrid HMM-DNN model that is still the state of the art in speech recognition.
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Themodel described here is the one provided in HW3. It’s a highly simplified

version of several neural models that were state-of-the-art at the time (Durrett

and Klein, 2015; Stern, Andreas, and Klein, 2017). We start off with an encoder as

in a translation system:

V ∈ R𝑛×𝑑

V𝑖 = Embedding
1 (𝑤𝑖 ) 𝑖 = 1, . . . , 𝑛 (6.77)

H ∈ R𝑛×𝑑

H = RNN
2 (V). (6.78)

The encoder could just as easily be a Transformer encoder (Kitaev and Klein,

2018).

If this were a language model, you’d expect something like a softmax layer to

predict the next word. But we want to predict a whole tree, so we have something

like a softmax over trees:

𝑃 (tree | 𝑤) = exp 𝑠 (tree)∑
tree

′
exp 𝑠 (tree′) (6.79)

where the summation over tree
′
sums over all trees with 𝑤 on their leaves, and

𝑠 (·) is the score of a tree, which is the sum of the scores of the rules in it:

𝑠 (tree) =
∑︁

(𝐴→𝛽 ) ∈tree
𝑠 (𝐴→ 𝑖𝛽 𝑗 ). (6.80)

This 𝑠 (𝐴 → 𝑖𝛽 𝑗 ) is the score of rule 𝐴 → 𝛽 , where 𝐴 spans the substring

𝑤𝑖+1 · · ·𝑤 𝑗 . It is computed by a feedforward neural network. Define a new kind

of module,

LinearLayer
ℓ (x) = W ℓ x + b ℓ

. (6.81)

Then for each span (𝑖, 𝑗), compute a span encoding

s(𝑖, 𝑗 ) =
[
H𝑖+1,:
H𝑗,:

]
(6.82)

and then feed it through two layers:

h(𝑖, 𝑗 ) ∈ R𝑑

h(𝑖, 𝑗 ) = tanh(LinearLayer 3 (s(𝑖, 𝑗 ) )) (6.83)

o(𝑖, 𝑗 ) ∈ R |𝐺 |

o(𝑖, 𝑗 ) = LinearLayer
4 (h(𝑖, 𝑗 ) ). (6.84)

If we number the rules of the grammar and rule𝐴→ 𝛽 has index 𝑟 , then the rule

score 𝑠 (𝐴→ 𝑖𝛽 𝑗 ) is o(𝑖, 𝑗 )𝑟 .

Two challenges remain. First, how do we use this model to search for the best
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tree? This turns out to be a simple modification to the CKY algorithm.

arg max

tree

𝑃 (tree | 𝑤) = arg max

tree

exp 𝑠 (tree)∑
tree

′ exp 𝑠 (tree′) (6.85)

= arg max

tree

exp 𝑠 (tree) (6.86)

= arg max

tree

∏
(𝐴→𝛽 ) ∈tree

exp 𝑠 (𝐴→ 𝑖𝛽 𝑗 ). (6.87)

This is the same problem that the Viterbi CKY algorithm solves, except we just

change the weight of a rule from 𝑃 (𝐴→ 𝛽) to exp 𝑠 (𝐴→ 𝑖𝛽 𝑗 ). The weights don’t

sum to one like probabilities do, but nothing about CKY depends on whether the

weights sum to one, so it will work fine.

The second challenge is, how do we compute

∑
tree

′
exp 𝑠 (tree′) in the denom-

inator of (6.79)? This is needed to form the loss function during training. It is

the sum of the weights of all trees with 𝑤 on their leaves. This, too, is a simple

modification to the CKY algorithm. It builds a table total [𝑖, 𝑗], and whenever two
items 𝑋 are added to the same cell total [𝑖, 𝑗], instead of keeping the best one, we
add them. The pseudocode is as follows:

Require: string𝑤 = 𝑤1 · · ·𝑤𝑛 and grammar 𝐺 = (𝑁, Σ, 𝑅, 𝑆)
Ensure: total [0, 𝑛] [𝑆] is the log of the total weight of all parses of𝑤

1: initialize total [𝑖, 𝑗] [𝑋 ] ← −∞ for all 0 ≤ 𝑖 < 𝑗 ≤ 𝑛,𝑋 ∈ 𝑁
2: for all 𝑖 ← 1, . . . , 𝑛 do
3: 𝑎 ← 𝑤𝑖

4: if (𝑋 → 𝑎) ∈ 𝑅 then
5: total [𝑖 − 1, 𝑖] [𝑋 ] ← logaddexp(total [𝑖 − 1, 𝑖] [𝑋 ], 𝑠 (𝑋 → 𝑖−1 𝑎 𝑖 ))
6: end if
7: end for
8: for ℓ ← 2, . . . , 𝑛 do
9: for 𝑖 ← 0, . . . , 𝑛 − ℓ do
10: 𝑗 ← 𝑖 + ℓ
11: for 𝑘 ← 𝑖 + 1, . . . , 𝑗 − 1 do
12: if (𝑋 → 𝑌𝑍 ) ∈ 𝑅 then
13: 𝑝′ ← 𝑠 (𝑋 → 𝑖 𝑌𝑍 𝑗 ) + total [𝑖, 𝑘] [𝑌 ] + total [𝑘, 𝑗] [𝑍 ]
14: total [𝑖, 𝑗] [𝑋 ] ← logaddexp(total [𝑖, 𝑗] [𝑋 ], 𝑝′)
15: end if
16: end for
17: end for
18: end for

The function logaddexp is defined as

logaddexp(𝑥,𝑦) = log(exp𝑥 + exp𝑦) (6.88)

but is implemented in a way that avoids over/underflow.
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