
Chapter 7

Semantics

When we began our study of syntax, I had to spend some time convincing you

that syntax exists (that is, that there is some kind of representation of syntactic

structure in your mind when you use language), but the basic shape of those

representations has not been all that controversial.

By contrast, as we turn our attention to semantics, or meaning, I probably

don’t need to convince you at all that meaning exists, but in theories of semantics

and computational approaches to semantics, representations of meaning come in

all kinds of shapes and sizes.

Semantics is often divided into the meanings of words, known as lexical se-
mantics, and the meanings of sentences, which is usually just called semantics.
As I see it, there are three main approaches to representing meaning in NLP:

1. Vectors: whose components are features, either designed by humans or

automatically learned.

2. Graphs: in which nodes are usually entities and edges are various kinds of

relationships among them.

3. Logic: formulas of logics of various kinds, or SQL queries, or even computer

programs.

7.1 Vectors
We’ve already seen lots of examples of vector representations of text. For exam-

ple, we saw, in IBM Model 1, possibly the simplest way to represent the “meaning”

of a text, which is to assume that each word in the text contributes a little bit of

meaning, which we can represent as a one-hot vector, and that we can combine

the “meanings” of words simply by adding up their vectors.

the cat sat on the mat→ {cat : 1,mat : 1, on : 1, sat : 1, the : 2}

In information retrieval, this is called a term vector, but in NLP it’s more com-

monly known (somewhat pejoratively) as a bag of words. This representation

completely ignores any semantic relationships between words (like synonymy)

and any kind of structure of the text (like word order or syntax). Yet, in many

situations, it can be very effective.

89

Chapter 7. Semantics 90

After IBM Model 1, recall that we factored the model so that it computed a 𝑑-

dimensional dense representation of the sentence. This sentence representation

was computed as a by-product of a model trained to carry out a particular task,

like translation.

7.1.1 Text classification
One type of problem where vector representations of texts come up very natu-

rally is text classification. The simplest kind of text classification model is called a

naive Bayes classifier; here, we’ll focus on classification models based on logistic
regression, which in the world of neural networks looks like this:

h ∈ R𝑑

h = Encoder(𝑤) (7.1)

y = SoftmaxLayer
1 (h) (7.2)

𝑃 (𝑘 | 𝑤) = y𝑘 (7.3)

where Encoder(·) is some function that encodes strings as vectors.

The simplest choice of encoding would be a bag of words. That is, 𝑑 = |Σ|,
the words of Σ are numbered 1, . . . , 𝑑 , and h𝜎 is the number of times that 𝜎 oc-

curs in 𝑤 . The parameters of the SoftmaxLayer would be weights W𝑘,𝜎 that cap-

ture how much word 𝜎 is predictive of class 𝑘 ; for example, we would expect

Wfind hotel,stay to be high, but Wfind hotel,eat to be low. This kind of classifier is

usually known as logistic regression.

There are many imaginable neural networks that can be used as string en-

coders, but the one that is most often used now works as follows. Prepend a

special token CLS to the string, so the string is now CLS𝑤1𝑤2 · · ·𝑤𝑛 . Then apply

a Transformer encoder, that is, look up word and position embeddings for each

word, then apply a stack of alternating self-attention layers and position-wise

feedforward neural networks. The result is a sequence of (𝑛 + 1) vectors. Take

the first of these (the one corresponding to CLS) to be h.

7.2 Graphs
The next broad category of semantic representation I want to talk about is se-

mantic graphs. I’m including under this heading a bunch of tasks like

• Named entity recognition: Which noun phrases are names of people, places,

etc., and what entity do they refer to?

• Coreference resolution: Which noun phrases (including pronouns) refer to

the same thing?

• Word sense disambiguation: If a word has more than one sense, which one

is being used in this context?

• Semantic role labeling: For each action in the sentence, who/what is the

agent (the one doing the action), the patient (the one upon whom the action

is done), etc.?

CSE 40657/60657: Natural Language Processing Version of November 16, 2023

Chapter 7. Semantics 91

• Relation extraction: Sometimes we’re interested in higher-level relation-

ships between entities, like “𝑥 is the president of 𝑦.”

Ultimately, the entities and relationships that these tasks find can be assembled

into a graph – either a graph that represents the meaning of a sentence, or a big

graph that represents the knowledge contained in a whole collection of text.

7.2.1 Named entity recognition (sequence labeling)
Problem

In named entity recognition (NER), the input is a sentence like

Please find me a train from cambridge to stansted airport

and the output has all the named entities tagged like this:

Please find me a train from [cambridge]LOC to [stansted airport]LOC

In the most common NER dataset, the four types are person (PER), organization

(ORG), location (LOC) and miscellaneous (MISC).

The most common way to formulate this kind of problem, where the com-

puter has to identify a number of non-overlapping substrings of the input, is

called BIO tagging.

O O O O O O B-LOC O B-LOC I-LOC

Please find me a train from cambridge to stansted airport

B stands for “begin” and is used for the first word in each slot-filler; I stands for

“inside” and is used for the second and subsequent words in each slot-filler. O

stands for “outside” and is used for any word that does not belong to a slot-filler.

Other schemes exist, like BILOU (L for the last word an entity, U ‘unit’ for the

only word in an entity), but this is the simplest and most common.

Now we’ve reduced slot-filling to a sequence labeling task. Other examples of

sequence labeling tasks are:

• Word segmentation: Given a representation of a sentence without any

word boundaries, reconstruct the word boundaries. In some languages, like

Chinese, words are written without any spaces in between them. (Indeed,

it can be difficult to settle on the definition of a “word” in such languages.)

• Part of speech tagging: Given a sentence, label each word with its part of

speech.

• Slot filling: Given a (partial) query, identify the spans that correspond to

parameters of the query. For example, in a travel booking system, the slots

might be the departure and arrival airports, the number of seats, etc.

One of the hallmarks of sequence labeling problems is dependencies between

the labels. For example, if we’re doing named entity recognition, a model might

learn that Dame has a high probability of being tagged I-ORG, as the last word

of Notre Dame (and University of Notre Dame, Cathedral of Notre Dame, etc.). But

in a sentence like

CSE 40657/60657: Natural Language Processing Version of November 16, 2023

Chapter 7. Semantics 92

In 2004, Dame Julie Andrews voiced Queen Lillian in Shrek 2,

Dame should be tagged B-PER. Maybe the model can get enough clues from the

surrounding words to tag it correctly, but the strongest clue should be that I-ORG

absolutely cannot follow O.

Sequence labeling as parsing

The classic models used to solve sequence labeling problems are, in historical

order, hidden Markov Models (HMMs), conditional random fields (CRFs), and

biLSTM-CRFs. HMMs and CRFs are usually formulated as either finite automata

or matrix operations. But since you have parsing with CFGs fresh in your mind,

let’s formulate them as CFGs. It may be overkill, but it’s arguably the cleanest

way to write them.

What would a parse tree look like for this task? The labels (B-*, I-*, O) would

be like parts of speech, and since we don’t have any other kind of structure, it

only makes sense to use a purely right-branching or left-branching structure.

Let’s choose right-branching:

S̄

Ō

Ō

Ō

Ō

Ō

Ō

B̄-LOC

Ō

B̄-LOC

Ī-LOC

Ē

EOS

I-LOC

airport

B-LOC

stansted

O

to

B-LOC

cambridge

O

from

O

train

O

a

O

me

O

find

O

Please

S

BOS

So the grammar has the following kinds of rules:

𝑋 → 𝑋 𝑌 𝑋 and 𝑌 are labels

𝑋 → 𝑎 𝑋 is a label and 𝑎 is a word (incl. BOS)

Ē→ EOS

The start symbol is S̄ (not S). Let’s call the first kind of rules transition rules and

the last two kinds emission rules. (The reason we have to special-case the last

rule is because it’s the only emission rule whose left-hand side has a bar over it.

Otherwise, it’s not really that special.)

CSE 40657/60657: Natural Language Processing Version of November 16, 2023

Chapter 7. Semantics 93

Classic models

If the grammar is a probabilistic CFG, then this is equivalent to a hidden Markov

model. The probabilities of the transition rules 𝑋 → 𝑋 𝑌 measure the probabil-

ity of one label coming after another and are called transition probabilities. The

emission rules, 𝑋 → 𝑎, measure the probability of generating a word given a

label and are called emission probabilities.
If the grammar is a weighted (not necessarily probabilistic) CFG, then this is

equivalent to a conditional random field. A rule can have any weight 𝑝 > 0; we

also call log 𝑝 its score. Note that in order for this CFG to be equivalent to a CRF,

we have to include all rules of the form 𝑋 → 𝑎 and 𝑋 → 𝑋 𝑌 , even if they were

not observed in the training data.

RNN+CRFs

In the parsing chapter and in HW3, we built a neural parser by using a neural

network to compute the rule scores of a weighted CFG. We can do the exact same

thing here, but with a slightly different neural network.

We start off, as usual, with a sequence encoder. Let𝑤 = 𝑤1 · · ·𝑤𝑛 be the input

string, with 𝑤1 = BOS and 𝑤𝑛 = EOS. Let Γ be the set of possible labels.

V ∈ R𝑛×𝑑

V𝑖 = Embedding
1 (𝑤𝑖) 𝑖 = 1, . . . , 𝑛 (7.4)

H ∈ R𝑛×𝑑

H = RNN
2 (V). (7.5)

Usually the encoder is a fancier kind of RNN called a bidirectional LSTM, but

we’re sticking to a simple, left-to-right RNN here. Each H𝑖 is the encoding of 𝑤𝑖 .

So far, this is the same as the neural parser from before.

Next, we need to define a function that assigns a score to every rule, possibly

depending on its position in the string. We define this function for the three kinds

of rules as follows:

𝑠 (𝑋 → 𝑖 𝑋 𝑌 𝑛) = T𝑋,𝑌 0 ≤ 𝑖 ≤ 𝑛 − 2 (7.6)

𝑠 (𝑋 → 𝑖−1 𝑎 𝑖) = O𝑖,𝑋 1 ≤ 𝑖 < 𝑛 (7.7)

𝑠 (Ē→ 𝑛−1 EOS 𝑛) = O𝑖,E (7.8)

where T ∈ R |Γ |× |Γ | is a matrix of learnable parameters, so that every transition

rule gets an independent score; and O is computed from the RNN encodings as

O ∈ R𝑛×|Γ |

O𝑖 = LinearLayer
3 (H𝑖). (7.9)

Now both training and labeling (= parsing) can be done exactly as before.

But, this is an extremely inefficient way of implementing a RNN+CRF. Since the

grammar includes all rules with the forms shown above, even if they were not

observed in the training data, the grammar is quite large. In the next section,

we’ll see how to optimize this.

CSE 40657/60657: Natural Language Processing Version of November 16, 2023

Chapter 7. Semantics 94

RNN+CRFs made more efficient

Recall that during training, we maximize

𝐿 =
∑︁

(𝑤,tree) ∈data

log 𝑃 (tree | 𝑤)

=
∑︁

(𝑤,tree) ∈data

log

exp 𝑠 (tree)∑
tree

′ exp 𝑠 (tree
′)

=
∑︁

(𝑤,tree) ∈data

©«
𝑠 (tree) − log

∑︁
tree

′
exp 𝑠 (tree

′

︸ ︷︷ ︸
partition function

)

ª®®®®®®¬
and the partition function is computed using a modified CKY algorithm. And

during parsing, we use the CKY algorithm.

As a reminder, here’s the algorithm, where we’ve plugged in the rule scores

computed by the neural network. The symbol ⊕ is a generic operator that is max

if we’re looking for the best parse and logaddexp if we want the total score of all

parses.

1: for all 0 ≤ 𝑖 < 𝑗 ≤ 𝑛 do
2: for all 𝑋 ∈ Γ do
3: chart[𝑖, 𝑗] [𝑋] ← −∞
4: chart[𝑖, 𝑗] [𝑋] ← −∞
5: end for
6: end for

7: ⊲ rules of the form 𝑋 → 𝑤𝑖

8: for all 𝑖 ← 1, . . . , 𝑛 − 1 do
9: for all 𝑋 ∈ Γ do

10: chart[𝑖 − 1, 𝑖] [𝑋] ← O𝑖,𝑋

11: end for
12: end for

13: ⊲ rule Ē→ EOS
14: chart[𝑛 − 1, 𝑛] [Ē] ← O𝑛,E

15: ⊲ rules of the form 𝑋 → 𝑋 𝑌

16: for ℓ ← 2, . . . , 𝑛 do
17: for 𝑖 ← 0, . . . , 𝑛 − ℓ do
18: 𝑗 ← 𝑖 + ℓ
19: for 𝑘 ← 𝑖 + 1, . . . , 𝑗 − 1 do
20: for all 𝑋 ∈ Γ do
21: for all 𝑌 ∈ Γ do
22: chart[𝑖, 𝑗] [𝑋] ← chart[𝑖, 𝑗] [𝑋]

⊕ (T𝑋,𝑌 + chart[𝑖, 𝑘] [𝑋] + chart[𝑘, 𝑗] [𝑌])
23: end for
24: end for

CSE 40657/60657: Natural Language Processing Version of November 16, 2023

Chapter 7. Semantics 95

25: end for
26: end for
27: end for
28: return chart[0, 𝑛] [S̄]

Linear time. This is𝑂 (𝑛3), but we would like to reduce this to𝑂 (𝑛). Remember

that the cubic time complexity comes from the triple loop involving 𝑖 , 𝑗 , and 𝑘 .

But in the trees that our grammar generates, it’s always the case that if 𝑗 − 𝑖 > 1,

then 𝑖 ≤ 𝑛−2, 𝑘 = 𝑖+1, and 𝑗 = 𝑛. We didn’t even define the rule-scoring function

for other values of 𝑖 and 𝑗 . So the above triple loop can be rewritten as a single

loop over 𝑖 .

Moreover, no cell chart[𝑖, 𝑗] has entries for both 𝑋 and 𝑋 . So we can drop the

distinction between 𝑋 and 𝑋 . This gives us the following algorithm:

1: for all 0 ≤ 𝑖 < 𝑗 ≤ 𝑛 do
2: for all 𝑋 ∈ Γ do
3: chart[𝑖, 𝑗] [𝑋] ← −∞
4: end for
5: end for
6: for all 𝑖 ← 1, . . . , 𝑛 − 1 do
7: for all 𝑋 ∈ Γ do
8: chart[𝑖 − 1, 𝑖] [𝑋] ← O𝑖,𝑋

9: end for
10: end for
11: chart[𝑛 − 1, 𝑛] [E] ← O𝑛,E

12: for 𝑖 ← 𝑛 − 2, . . . , 0 do
13: for all 𝑋 ∈ Γ do
14: for all 𝑌 ∈ Γ do
15: chart[𝑖, 𝑛] [𝑋] ← chart[𝑖, 𝑛] [𝑋]

⊕ (T𝑋,𝑌 + chart[𝑖, 𝑖 + 1] [𝑋] + chart[𝑖 + 1, 𝑛] [𝑌])
16: end for
17: end for
18: end for

Vectorization. The other thing that is special about our grammar is that it’s

very dense, in the sense that it has a rule 𝑋 → 𝑎 for every single 𝑋 , and a rule

𝑋 → 𝑋 𝑌 for every single 𝑋 and 𝑌 . Instead of thinking of chart[𝑖, 𝑗] as a hash

table from labels to numbers, we think of it as a vector of numbers. Instead of all

those loops over labels, we can now use vector operations. Modified 2023-11-08

to make the

pseudocode less

pseudo

The loop at line 2 can be replaced with a single call to torch.full(). Simi-

larly, the loop at line 7 can be replaced with a single assignment.

The double loop at line 13 can also be replaced with tensor operations. In

pseudo-PyTorch, the sum (T𝑋,𝑌 + chart[𝑖, 𝑖 + 1] [𝑋] + chart[𝑖 + 1, 𝑛] [𝑌]) becomes

C← T + unsqueeze(chart[𝑖, 𝑖 + 1], 1) + chart[𝑖 + 1, 𝑛]
which has size |Γ | × |Γ |. Then, during training, we compute chart[𝑖, 𝑛] as the

logaddexp of all the columns of C:

chart[𝑖, 𝑛] ← logsumexp(C, dim = 1)

CSE 40657/60657: Natural Language Processing Version of November 16, 2023

Chapter 7. Semantics 96

During parsing (which in the context of sequence labeling is called decoding

or inference), we want to find the elementwise max of all the columns of C:

chart[𝑖, 𝑛], back[𝑖, 𝑛] ← max(C, dim = 1)

PyTorch’s max function returns a pair of tensors: the first contains the maxi-

mum values, and the second contains the indices of the maximum values (the

argmaxes).

Reconstructing the best label sequence is just like reconstructing the best

parse tree in CKY. Namely, back[𝑖, 𝑛]𝑋 = 𝑌 means that the best labeling of

𝑤𝑖+1 · · ·𝑤𝑛 that starts with 𝑋 continues with 𝑌 . So back[0, 𝑛]S tells you the first

label in the best label sequence (call it 𝑋1), and back[1, 𝑛]𝑋1
tells you the second Corrected 2023-11-16

label in the best label sequence, and so on.

One final note: It’s a little weird that this algorithm runs right-to-left. If we

had made our original tree left-branching instead of right-branching, the final

algorithm would run left-to-right.

7.2.2 Abstract Meaning Representations

Above we mentioned various semantics-related tasks like semantic role label-

ing (Gildea and Jurafsky, 2000), word sense disambiguation (Brown et al., 1991),

coreference resolution (Soon, Ng, and Lim, 2001), and so on. Resources like OntoNotes

(Hovy et al., 2006) provided separate resources for each of these tasks.

Some more recent work in semantic processing tries to consolidate these

tasks into one. For example, the Abstract Meaning Representation (AMR) Bank

(Banarescu et al., 2013) began as an effort to unify the various annotation layers

of OntoNotes. Others include: the Prague Dependency Treebank (Böhmová et al.,

2003), DeepBank (Oepen and Lønning, 2006), and Universal Conceptual Cogni-

tive Annotation (Abend and Rappoport, 2013). By and large, these resources are

based on, or equivalent to, graphs, in which vertices stand for entities and edges

stand for semantic relations among them.

Data format

Here, I’ll focus on AMRs, just because they’re the representation I’m most famil-

iar with. AMRs can be written in a serialized form or as directed graphs. Examples

of these two representations, from the AMR Bank (LDC2014T12), are reported in

Figure 7.1 and Figure 7.2. Nodes are labeled, in order to convey lexical informa-

tion. Edges are labeled to convey information about semantic roles. Labels at the

edges need not be unique, meaning that edges impinging on the same node might

have the same label. Furthermore, our DAGs are not ordered, meaning that there

is no order relation for the edges impinging at a given node, as is usually the

case in standard graph structures. A node can appear in more than one place (for

example, in Figure 7.1, node s2 appears six times).

The numbers (e.g., ask-01) require some explanation. These are from Prop-

Bank (Palmer, Gildea, and Kingsbury, 2005), which catalogues and numbers, for

each verb, the different senses of the verb and ways it can be used. For example,

• ask-01 is for asking questions

CSE 40657/60657: Natural Language Processing Version of November 16, 2023

Chapter 7. Semantics 97

(a / and
:op1 (a2 / ask-01

:ARG0 (i / i)
:ARG1 (t / thing

:ARG1-of (t2 / think-01
:ARG0 (s2 / she)
:ARG2 (l / location

:location-of (w / we))))
:ARG2 s2)

:op2 (s / say-01
:ARG0 s2
:ARG1 (a3 / and

:op1 (w2 / want-01 :polarity -
:ARG0 s2
:ARG1 (t3 / think-01

:ARG0 s2
:ARG1 l))

:op2 (r / recommend-01
:ARG0 s2
:ARG1 (c / content-01

:ARG1 i
:ARG2 (e / experience-01

:ARG0 w))
:ARG2 i))

:ARG2 i)
:op3 c)

Figure 7.1: Example AMR in its standard format, number

DF-200-192403-625 0111.7 from the AMR Bank. The sentence is: “I asked her

what she thought about where we’d be and she said she doesn’t want to think

about that, and that I should be happy about the experiences we’ve had (which I

am).”

• ask-02 is for asking favors

• ask-03 is for asking a price

• ask out-04 is for asking someone on a date.

Each of these senses comes with a numbered list of arguments. For example, for

ask-01,

• arg0 is the asker

• arg1 is the question

• arg2 is the hearer.

CSE 40657/60657: Natural Language Processing Version of November 16, 2023

Chapter 7. Semantics 98

a / and

a2 / ask-01

op1

s / say-01

op2

c / content-01

op3

i / i

ARG0

t / thing

ARG1

s2 / she

ARG2

ARG2ARG0

a3 / and

ARG1

ARG1

e / experience-01

ARG2

w2 / want-01

op1

r / recommend-01

op2

ARG0 -

polarity

t3 / think-01

ARG1 ARG1

ARG2ARG0

ARG0

l / location

ARG1

w / we

ARG0

location

t2 / think-01

ARG1ARG0

ARG2

Figure 7.2: The AMR of Figure 7.1, presented as a directed graph.

AMR parsing

Semantic parsing is the task of taking a natural language sentence and mapping

it to a representation of its meaning. If the semantic representation is AMR, we

call this AMR parsing.

These days, it’s easy to build a barebones AMR parser – just run a neural

machine translation system on parallel text consisting of English sentences and

their AMRs in textual format (Figure 7.1). Research on AMR parsing has gotten

plenty more sophisticated than that, but here I want to focus on one improvement

to the basic NMT system (which you will implement in HW4).

Unlike language-to-language translation, it’s typical for the AMR to have

words in common with the source text. The NMT system can do a good job learn-

ing to copy these words if they’re frequent, but for rare words, it may do so less

reliably, and for unknown words, it will be unable to. So we want to add a copy
mechanism to the model.

The basic idea is to introduce a fake target word, COPY, which instructs the

system to copy a word from the source sentence. Which word? We use the source-

to-target attention, which is a distribution over source positions, to choose one

source word.

We’re only interested in the last two steps of the model, which were the same

in our presentation of both the RNN and Transformer models. These are for the

CSE 40657/60657: Natural Language Processing Version of November 16, 2023

Chapter 7. Semantics 99

context vector c(𝑖) , and the output word distribution:

g(𝑖) ∈ R𝑑

H ∈ R𝑛×𝑑

o(𝑖) ∈ R𝑑

c(𝑖) ∈ R𝑑

c(𝑖) = Attention(g(𝑖) ,H,H) (7.10)

𝑃 (𝑒𝑖+1) = SoftmaxLayer
6 (o(𝑖)). (7.11)

The equation for c(𝑖) computes both the attention and the weighted average,

so we’re going to “break it open” to get at the attention inside:

𝛼 (𝑖) ∈ R𝑛 (7.12)

𝛼 (𝑖) = softmaxHg(𝑖) (7.13)

The output word distribution now includes COPY. We modify this to:

p(𝑖) ∈ R𝑛 (7.14)

p(𝑖) = SoftmaxLayer
6 (o(𝑖)) (7.15)

𝑃 (𝑒) = p(𝑖)𝑒 + p(𝑖)COPY
∑︁

𝑗=1,...,𝑛
𝑓𝑗=𝑒

𝛼
(𝑖)
𝑗
. (7.16)

This means that there are one or more ways of choosing word 𝑒: first, we could

choose it directly from the output distribution o(𝑖) , or, for each source word 𝑓𝑗

that is equal to 𝑒 , we could copy word 𝑓𝑗 with probability p(𝑖)COPY𝛼 𝑗 .

Note that

• 𝛼 (𝑖) and p(𝑖) are both vectors of probabilities, not log-probabilities.

• The test 𝑓𝑗 = 𝑒 compares the words as words, not as numbers.

7.3 Logic
The last category of semantic representations is that of logical formulas, under-

stood broadly to include not only logics like first-order logic, but languages like

SQL or even programming languages.

In these notes, I’d like to focus on a traditional approach to semantics called

Montague grammar.

7.3.1 Logical forms
We start with a very simple example:

(7.17) a. John sees Mary.

b. see(John,Mary).

CSE 40657/60657: Natural Language Processing Version of November 16, 2023

Chapter 7. Semantics 100

Entities are represented by constants or variables, and events are represented by

predicates.

A variation (called neo-Davidsonian semantics) represents events by vari-

ables, too:

(7.18) a. John sees Mary.

b. ∃𝑒.see(𝑒) ∧ agent(𝑒, John) ∧ theme(𝑒,Mary).

This is quite similar to AMR. But let’s stick with events as predicates.

A key way that logical semantics differs from graph representations like AMR

is in handling of quantifiers.

(7.19) a. John sees a girl.

b. ∃𝑔.girl(𝑔) ∧ see(John, 𝑔).

(7.20) a. A boy sees Mary.

b. ∃𝑏.boy(𝑏) ∧ see(𝑏,Mary).

7.3.2 Compositionality
How do we compute these representations? We want to follow the principle of

compositionality, that the meaning of any expression is computed from the mean-

ing of its subexpressions. In other words, we want to write a recursive function

that processes a syntax tree bottom-up, something like

function semantics(root)

if root = S and root.children = (NP,VP) then
𝑠1 ← semantics(root.children[1])
𝑠2 ← semantics(root.children[2])
build 𝑠 from 𝑠1 and 𝑠2

return 𝑠

else. . .
end if

end function
So we want to associate with each context-free grammar rule (e.g., S →

NP VP) a little function that build the semantics of S from the semantics of NP

and VP. To do that, it will be convenient to have some new notation for writing

little functions.

7.3.3 Lambda calculus
A 𝜆-expression (lambda-expression) is a self-contained way of writing a function.

Many programming languages now have them:

𝜆-calculus 𝜆𝑥.𝑥 · 𝑥
Scheme/Lisp (lambda (x) (* x x))

Python lambda x: x * x
C++ [](float x) { return x * x; }

CSE 40657/60657: Natural Language Processing Version of November 16, 2023

Chapter 7. Semantics 101

In 𝜆-calculus, the application of a function 𝑓 to an expression 𝑒 is simply written

as 𝑓 𝑒 . So

(𝜆𝑥 .𝑥 · 𝑥)10 −→ 10 · 10 = 100.

Lambda expressions can do a lot of things you might not expect them to be

able to do at first; here, I want to mention just one. Traditionally, 𝜆-expressions

take exactly one argument. But you can effectively write a function of two argu-

ments as a function that returns another function, like this:

𝑓 = 𝜆𝑥.𝜆𝑦.
√︁
𝑥2 + 𝑦2

(7.21)

𝑓 3 4 = (𝜆𝑥 .𝜆𝑦.
√︁
𝑥2 + 𝑦2) 3 4 (7.22)

−→ (𝜆𝑦.
√︁

3
2 + 𝑦2) 4 (7.23)

−→
√

3
2 + 4

2
(7.24)

= 5. (7.25)

This is called currying after Haskell Curry, who had nothing to do with it.

7.3.4 Examples
Here’s a very simple CFG, each of whose rules is associated with a function that

computes the semantics of the left-hand side (that is, the parent) in terms of the

semantics of the right-hand side (that is, the children):

S→ NP VP 𝜆𝑥.𝜆𝑃 .𝑃𝑥

NP→ John John
NP→ Mary Mary
VP→ IV 𝜆𝑃 .𝑃

IV→ stands 𝜆𝑥.stand(𝑥)

S

VP

IV

stands

NP

John

stand(John)

𝜆𝑥 .stand(𝑥)

𝜆𝑥 .stand(𝑥)

John

S→ NP VP 𝜆𝑥.𝜆𝑃 .𝑃𝑥

NP→ John John
NP→ Mary Mary
VP→ IV 𝜆𝑃 .𝑃

VP→ TV NP 𝜆𝑃 .𝜆𝑦.𝜆𝑥 .𝑃 (𝑥,𝑦)
IV→ stands 𝜆𝑥 .stand(𝑥)

TV→ sees 𝜆𝑥 .𝜆𝑦.see(𝑥,𝑦)

CSE 40657/60657: Natural Language Processing Version of November 16, 2023

Chapter 7. Semantics 102

S

VP

NP

Mary

TV

sees

NP

John

see(John,Mary)

𝜆𝑥.see(𝑥,Mary)

Mary𝜆𝑥 .𝜆𝑦.see(𝑥,𝑦)

John

When we try to get examples like (7.19–7.20), however, problems arise. The

meaning of “a” should be ∃, but how do we get this quantifier to appear on the

very outside of the formula? The solution is to flip everything around so that

the semantics for “a boy” should not just be a formula representing a boy; it

should be a function that takes a predicate 𝑃 about boys and returns the formula

∃𝑏.boy(𝑏) ∧ 𝑃 (𝑏).

S→ NP VP 𝜆𝑓 .𝜆𝑃 .𝑓 𝑃

NP→ John 𝜆𝑃 .𝑃 (John)
NP→ Mary 𝜆𝑃 .𝑃 (Mary)
NP→ a boy 𝜆𝑃 .(∃𝑏.boy(𝑏) ∧ 𝑃𝑏)
NP→ a girl 𝜆𝑃 .(∃𝑔.girl(𝑔) ∧ 𝑃𝑔)
VP→ TV NP 𝜆𝑃 .𝜆𝑓 .𝜆𝑥 .𝑓 (𝜆𝑦.𝑃𝑥𝑦)
TV→ sees 𝜆𝑥.𝜆𝑦.see(𝑥,𝑦)

S

VP

NP

girla

TV

sees

NP

John

∃𝑔.girl(𝑔) ∧ see(John, 𝑔)

𝜆𝑥 .(∃𝑔.girl(g) ∧ see(𝑥,𝑔))

𝜆𝑃 .∃𝑔.girl(g) ∧ 𝑃 (𝑔)𝜆𝑥.𝜆𝑦.see(𝑥,𝑦)

𝜆𝑃 .𝑃 (John)

The computation of VP is particularly complicated, so we write it out step by

CSE 40657/60657: Natural Language Processing Version of November 16, 2023

Chapter 7. Semantics 103

step:

(𝜆𝑃 .𝜆𝑓 .𝜆𝑥 .𝑓 (𝜆𝑦.𝑃𝑥𝑦)) (𝜆𝑥.𝜆𝑦.see(𝑥,𝑦)) (𝜆𝑃 .(∃𝑔.girl(g) ∧ 𝑃𝑔))
−→ (𝜆𝑓 .𝜆𝑥 .𝑓 (𝜆𝑦.(𝜆𝑥.𝜆𝑦.see(𝑥,𝑦))𝑥𝑦)) (𝜆𝑃 .(∃𝑔.girl(g) ∧ 𝑃𝑔))
−→ (𝜆𝑓 .𝜆𝑥 .𝑓 (𝜆𝑦.(𝜆𝑦.see(𝑥,𝑦))𝑦)) (𝜆𝑃 .(∃𝑔.girl(g) ∧ 𝑃𝑔))
−→ (𝜆𝑓 .𝜆𝑥 .𝑓 (𝜆𝑦.see(𝑥,𝑦))) (𝜆𝑃 .(∃𝑔.girl(g) ∧ 𝑃𝑔))
−→ 𝜆𝑥.(𝜆𝑃 .(∃𝑔.girl(g) ∧ 𝑃𝑔)) (𝜆𝑦.see(𝑥,𝑦))
−→ 𝜆𝑥.(∃𝑔.girl(g) ∧ (𝜆𝑦.see(𝑥,𝑦))𝑔)
−→ 𝜆𝑥.(∃𝑔.girl(g) ∧ see(𝑥, 𝑔)) .

Finally, we refine our grammar so that “a” has its own semantics.

S→ NP VP 𝜆𝑓 .𝜆𝑃 .𝑓 𝑃

NP→ John 𝜆𝑃 .𝑃 (John)
NP→ Mary 𝜆𝑃 .𝑃 (Mary)
NP→ Det N 𝜆𝑑.𝜆𝑓 .𝑑 𝑓

Det→ a 𝜆𝑁 .𝜆𝑃 .(∃𝑥 .𝑁𝑥 ∧ 𝑃𝑥)
Det→ every 𝜆𝑁 .𝜆𝑃 .(∀𝑥 .𝑁𝑥 ∧ 𝑃𝑥)

N→ boy 𝜆𝑏.boy(𝑏)
N→ girl 𝜆𝑔.girl(𝑔)

VP→ TV NP 𝜆𝑃 .𝜆𝑓 .𝜆𝑥 .𝑓 (𝜆𝑦.𝑃𝑥𝑦)
TV→ sees 𝜆𝑥 .𝜆𝑦.see(𝑥,𝑦)

References
Abend, Omri and Ari Rappoport (2013). “Universal Conceptual Cognitive An-

notation (UCCA)”. In: Proceedings of the 51st Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long Papers). Sofia, Bulgaria,

pp. 228–238. url: http://www.aclweb.org/anthology/P13-1023.

Banarescu, Laura et al. (2013). “Abstract Meaning Representation for Sembank-

ing”. In: Proceedings of the Linguistic Annotation Workshop. Sofia, Bulgaria,

pp. 178–186.

Böhmová, Alena et al. (2003). “The Prague Dependency Treebank: A Three-Level

Annotation Scenario”. In: Treebanks: Building and Using Parsed Corpora. Ed.

by A. Abeillé. Kluwer, pp. 103–127.

Brown, Peter F. et al. (1991). “Word-sense disambiguation using statistical meth-

ods”. In: Proceedings of the 29th Annual Meeting of the Association for Compu-
tational Linguistics (ACL-91). Berkeley, CA, pp. 264–270.

Gildea, Daniel and Daniel Jurafsky (2000). “Automatic Labeling of Semantic Roles”.

In: Proceedings of the 38th Annual Conference of the Association for Computa-
tional Linguistics (ACL-00). Hong Kong, pp. 512–520.

CSE 40657/60657: Natural Language Processing Version of November 16, 2023

http://www.aclweb.org/anthology/P13-1023

Chapter 7. Semantics 104

Hovy, Eduard et al. (2006). “OntoNotes: The 90% Solution”. In: Proceedings of the
Human Language Technology Conference of the NAACL, Companion Volume:
Short Papers. New York City, USA, pp. 57–60. url: http://www.aclweb.
org/anthology/N/N06/N06-2015.

Oepen, Stephan and Jan Tore Lønning (2006). “Discriminant-Based MRS Bank-

ing”. In: International Conference on Language Resources and Evaluation (LREC).
Genoa, pp. 1250–1255.

Palmer, Martha, Daniel Gildea, and Paul Kingsbury (2005). “The Proposition Bank:

An Annotated Corpus of Semantic Roles”. In: Computational Linguistics 31.1,

pp. 71–106. doi: 10.1162/0891201053630264. url: https://www.aclweb.
org/anthology/J05-1004.

Soon, Wee Meng, Hwee Tou Ng, and Daniel Chung Long Lim (2001). “A Machine

Learning Approach to Coreference Resolution of Noun Phrases”. In: Compu-
tational Linguistics 27.4, pp. 521–544.

CSE 40657/60657: Natural Language Processing Version of November 16, 2023

http://www.aclweb.org/anthology/N/N06/N06-2015
http://www.aclweb.org/anthology/N/N06/N06-2015
https://doi.org/10.1162/0891201053630264
https://www.aclweb.org/anthology/J05-1004
https://www.aclweb.org/anthology/J05-1004

	Semantics
	Vectors
	Text classification

	Graphs
	Named entity recognition (sequence labeling)
	Abstract Meaning Representations

	Logic
	Logical forms
	Compositionality
	Lambda calculus
	Examples

