
Chapter 8

Generation

The traditional generation task involved mapping some kind of semantic repre-

sentation to text. As we’ve seen, defining a semantic representation is difficult,

prompting the question, “Generation from what?!” (Wilks). In this chapter, we’re

going to sidestep this question by focusing exclusively on generation from vector

representations.

8.1 What to generate?
First I’d like to take a step back to think about what generation is supposed to

do. Suppose we have some model 𝑃 (𝑦 | 𝑥) that is an estimate of some true dis-

tribution 𝑃 (𝑦 | 𝑥). For now, you can assume that 𝑥 is some user prompt (like a

question) and 𝑦 is the machine’s response.

What is this true distribution supposed to be? All human beings? A particular

(real or imaginary) human being? An omniscient person?

Supposing that we can estimate 𝑃 (𝑦 | 𝑥) perfectly, how do we generate re-

sponses from it, given 𝑥? Do we sample randomly from 𝑃 (𝑦 | 𝑥), or do we choose

arg max𝑦 𝑃 (𝑦 | 𝑥), or something else?

To see why these are hard questions, consider how we would want a com-

puter to respond to:

• What is your name?

• Please tell me a joke.

• What is the 123,456,789th digit of 𝜋?

• Please write me a sonnet on the subject of the Forth Bridge.

• Will a baseball dropped on the moon fall down?
1

I don’t have a good answer to the question of the true distribution; here, we

just assume that we are given data drawn from somewhere. As for the question

1
In a survey of 305 respondents, mostly studying to become elementary school teachers, only

32.8% correctly answered “yes” (Stein et al., “A study of common beliefs and misconceptions in phys-

ical science”, Journal of Elementary Science Education 20:2, 2008, pages 1–11).
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of what 𝑦 we should choose, it seems that there are some tasks (machine transla-

tion, factual question answering) where we want the argmax, and some (creative

writing) where we want to sample, and some tasks where we might want some-

thing in between. In the next section, we’ll see some additional technical reasons

that contribute to this question.

8.2 Generation from language models
We’ve already seen an example of a model for generation, as part of machine

translation. We used an encoder–decoder for machine translation, but here we’re

going to consider language models based on decoder-only transformers.

8.2.1 Model
The input to the model is a prefix BOS ·𝑤1 · · ·𝑤𝑡−1, and the output is a distribution

over the next word, 𝑃 (𝑤𝑡 ).

V0, . . . ,V𝑡−1 = Embedding
1 (BOS ·𝑤1 · · ·𝑤𝑡−1)

H0, . . . ,H𝑡−1 = Transformer
2 (V0, . . . ,V𝑡−1)

y(𝑡 ) = log(softmax(LinearLayer
3 (H𝑡−1))).

The transformer uses masked self-attention. Then y(𝑡 ) is the vector of log-probabilities

log 𝑃 (𝑤𝑡 ).
Now suppose you want to ask the model a question 𝑥 = 𝑥1 · · · 𝑥𝑚 . The model

doesn’t immediately give a distribution over answers𝑦; it only gives distributions

over next words. The mathematically most correct way to get a distribution over

answers would be

𝑃 (𝑦 | 𝑥) = 𝑃 (𝑦1 | BOS · 𝑥1 · · · 𝑥𝑚)
· 𝑃 (𝑦2 | BOS · 𝑥1 · · · 𝑥𝑚 · 𝑦1)
...

· 𝑃 (𝑦𝑛 | BOS · 𝑥1 · · · 𝑥𝑚 · 𝑦1 · · ·𝑦𝑛−1)
· 𝑃 (EOS | BOS · 𝑥1 · · · 𝑥𝑚 · 𝑦1 · · ·𝑦𝑛)

where 𝑛 = |𝑦 |. (Perhaps there could be some separator symbol between 𝑥𝑚 and

𝑦1.)

8.2.2 Ancestral sampling
Then there are two natural choices for an algorithm to choose an answer. First,

we could randomly choose one. This algorithm is called ancestral sampling:

• 𝑤 ← BOS · 𝑥

• while 𝑤 does not end in EOS

CSE 40657/60657: Natural Language Processing Version of November 28, 2023



Chapter 8. Generation 107

– sample 𝑎 from 𝑃 (𝑎 | 𝑤)
– 𝑤 ← 𝑤 · 𝑎

• output 𝑤

But, in addition to the problems alluded to above (when there is a correct an-

swer, the user usually wants the correct answer and not a random answer), the

randomly-generated answer will be fairly incoherent. The following example is

from Holtzman et al. (2020) using GPT-2:

• Prompt: In a shocking finding, scientist discovered a herd of
unicorns living in a remote, previously unexplored valley, in
the Andes Mountains. Even more surprising to the researchers
was the fact that the unicorns spoke perfect English.

• Response: They were cattle called Bolivian Cavalleros; they
live in a remote desert uninterrupted by town, and they speak
huge, beautiful, paradisiacal Bolivian linguistic thing. They
say, ’Lunch, marge.’ They don’t tell what the lunch is,"
director Professor Chuperas Omwell told Sky News. "They’ve
only been talking to scientists, like we’re being interviewed
by TV reporters. We don’t even stick around to be interviewed
by TV reporters. Maybe that’s how they figured out that they’re
cosplaying as the Bolivian Cavalleros."

Recall that to avoid overfitting, and in particular to avoid assigning a zero prob-

ability to any word, we applied smoothing to 𝑛-gram language models, adding

some probability to words that have never been seen in a given context. Neu-

ral language models don’t require smoothing, but there are various factors that

achieve a similar effect:

• The next-word distribution is a softmax, which cannot output zero

• The model works with vectors whose size is smaller than the vocabulary

size

• The training of the model is stopped early, when perplexity on a validation

set is minimized

The result is that the model assigns a too-high probability to weird choices. That

makes ancestral sampling too willing to actually make a weird choice (e.g., cattle),
and the more weird words get added to the context, the weirder future choices

will become.

8.2.3 Exact search and beam search
How about the alternative, choosing the most probable 𝑦? First of all, this is

in general an NP-hard problem (Higuera and Oncina, 2013). It’s possible to use

heuristics to solve it slowly (Stahlberg and Byrne, 2019), but in practice we always

use an approximate search, beam search.

The idea of beam search is to generate a string from left-to-right, and at each

time step, we keep only the best 𝑘 strings so far:
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• 𝑏 (𝑖 ) ← BOS · 𝑥 for 𝑖 = 1, . . . , 𝑘

• while any 𝑏 (𝑖 ) does not end in EOS

– 𝐵 ← ∅
– for 𝑖 = 1, . . . , 𝑘

∗ if 𝑏𝑖 ends in EOS, 𝐵 ← 𝐵 ∪ {𝑏 (𝑖 ) }
∗ else, 𝐵 ← 𝐵 ∪ {𝑏 (𝑖 ) · 𝑎 | 𝑎 ∈ Σ}

– 𝑏 (1) , . . . , 𝑏 (𝑘 ) ← the best 𝑘 members of 𝐵

• Output the best of {𝑏 (𝑖 ) | 𝑖 = 1, . . . , 𝑘}

This is what’s typically used in machine translation (with typical𝑘 being quite

small, like 𝑘 = 4). But this suffers from problems of its own. The best output may

be empty, or highly repetitive, or a copy of 𝑥 .

Why empty? Since the probability of a string is the product of the probability

of the words, and multiplying probabilities always makes them smaller, it’s easy

for shorter strings to have higher probability than longer strings. Even if the

model knows that 𝑃 (EOS | BOS) is low, it needs to be lower than the probability

of the whole correct string, and that’s not easy to do (Murray and Chiang, 2018).

Why a copy? Even if the data has just a few examples of copying in it, the

fact that there’s only one way to copy a sentence but many ways to actually

respond to it, the probability of a copy may be higher than the probability of any

legitimate response (Ott et al., 2018).

As an example of repetition, beam search for the above unicorn prompt gives

(Holtzman et al., 2020):

• Response: "The study, published in the Proceedings of the
National Academy of Sciences of the United States of America
(PNAS), was conducted by researchers from the Universidad
Nacional Autónoma de México (UNAM) and the Universidad Nacional
Autónoma de México (UNAM/Universidad Nacional Autónoma de
México/Universidad Nacional Autónoma de México/Universidad
Nacional Autónoma de México/Universidad Nacional Autónoma de
..."

8.2.4 Compromises
In machine translation, the usual fix is to do something simple like divide the log-

probability of a translation by its length (Koehn and Knowles, 2017). Additionally,

the fact that beam search is approximate turns out to be helpful, so keeping 𝑘 low

is good. The special case 𝑘 = 1 is called greedy search, which you will be asked to

implement:

• 𝑤 ← BOS · 𝑥

• while 𝑤 does not end in EOS

– 𝑎 ← arg max𝑎 𝑃 (𝑎 | 𝑤)
– 𝑤 ← 𝑤 · 𝑎
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• output 𝑤

But in other settings, the common practice is to use some kind of compromise

between ancestral sampling and greedy search. All of the following affect only

the line that chooses 𝑎:

• Sample 𝑎 from 𝑃 (𝑎 | 𝑤), but modify the model during generation only so

that

o(𝑡 ) = log(softmax(LinearLayer
3 (H𝑡−1)/𝑇 ))

where 𝑇 is called the temperature (and in fact corresponds to the temper-

ature in a Boltzmann distribution). At 𝑇 = 1, this is ancestral sampling,

and as 𝑇 approaches 0, this becomes greedy search. (Warning: sometimes

people incorrectly call 1/𝑇 the temperature.)

• Top-𝑘 sampling: Assume a fixed 𝑘 > 0. Let 𝑎1, . . . , 𝑎𝑘 be the symbols that

have the top 𝑘 values of 𝑃 (𝑎 | 𝑤), then sample 𝑎 from the distribution

Top(𝑎) = 𝑃 (𝑎 | 𝑤)∑𝑘
𝑖=1

𝑃 (𝑎𝑖 | 𝑤)
(𝑎 ∈ {𝑎1, . . . , 𝑎𝑘 }).

• Nucleus or top-𝑝 sampling (Holtzman et al., 2020): Assume a fixed 𝑝 > 0.

Let 𝑎1, . . . , 𝑎𝑘 be the smallest subset of Σ such that

∑𝑘
𝑖=1

𝑃 (𝑎𝑖 | 𝑤) ≥ 𝑝 .

(That is, sort the alphabet in decreasing order according to 𝑃 (𝑎 | 𝑤), and

go down the list until the total probability is 𝑝 or more.) Then sample 𝑎

from the distribution Top(𝑎) as above.

All of these methods work reasonably well in practice, but a truly principled

account of how to sample from language models is still a topic of research.

8.3 Reinforcement learningwithhuman feed-
back

A language model trained on a mountain of text can be used for completing texts,

but isn’t necessarily great at particular applications, like dialogue. Questions or

requests aren’t all that frequent in most texts, and their completions are often not

direct responses to those questions or requests. ChatGPT is further trained using

reinforcement learning with human feedback or RLHF (Ouyang et al., 2022).
2

The short but inaccurate story is: Define 𝑟human (𝑥,𝑦) to be a numeric score

that a human would assign to a response𝑦 for a prompt 𝑥 . Let𝜙 be the parameters

of the language model. We train the language model using maximum-likelihood

to get parameter values 𝜙0, and then we want to further fine-tune the language

model by maximizing the following objective function:

𝐿 =
∑︁
𝑤

𝛾 log 𝑃𝜙 (𝑤) +
∑︁
𝑥

∑︁
𝑦

𝑃𝜙 (𝑦 | 𝑥) 𝑟human (𝑥,𝑦). (8.1)

The first term is the usual log-likelihood; the summation over𝑤 is over the origi-

nal training data. The second term is the expected score: the summation over 𝑥 is

2
This blog post is also helpful: https://huyenchip.com/2023/05/02/rlhf.html
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over some collection of prompts, and the summation over 𝑦 is theoretically over

all possible responses.

This creates a chain of problems. First, the summation over 𝑦 is infinite. In-

stead, we approximate this sum by randomly generating some 𝑦’s from the lan-

guage model, 𝑃𝜙 (𝑦 | 𝑥). This approximation is typical in reinforcement learning.

For example, to train a computer to play a video game, you can define a proba-

bility distribution over sequences of moves, but you can’t maximize the expected

final score. Instead, you have the computer play the game, reward it according

to the final score, and repeat, and hopefully the computer will play better and

better each time.

But this still isn’t practical, because in RLHF the rewards are assigned by hu-

mans. Even industrial research groups apparently have no more than 1M judge-

ments, which is not enough. So we create another model, called the rewardmodel,
𝑟𝜃 (𝑥,𝑦), to mimic 𝑟human (𝑥,𝑦). The subscript 𝜃 stands for the parameters of the

reward model. The idea is to train this model on the human-generated examples,

then plug this model into (8.1):

𝐿 =
∑︁
𝑤

𝛾 log 𝑃𝜙 (𝑤) +
∑︁
𝑥

∑︁
𝑦

𝑃𝜙 (𝑦 | 𝑥) 𝑟𝜃 (𝑥,𝑦). (8.2)

Note that 𝜃 is kept fixed while maximizing 𝐿.

The next problem is that humans actually aren’t that good at assigning nu-

meric scores. It’s much more reliable to present a human with two responses 𝑦

and𝑦′ and choose which one is better (a pairwise judgement). So wrap the reward

model inside another model that chooses between two responses:

𝑃 (𝑦 better than 𝑦′) = sigmoid(𝑟𝜃 (𝑥,𝑦) − 𝑟𝜃 (𝑥,𝑦′)) .

Then given a collection of human pairwise judgements, we can learn a 𝜃 that

maximizes their log-likelihood. This is the same method used to compute Elo

ratings of chess players. Every response𝑦 is a “player,” every pairwise judgement

is a “match” between 𝑦 and 𝑦′, and the response that is judged to be better is the

“winner.” In a step of gradient ascent, if𝑦 is the “winner,” its “rating” 𝑟𝜃 (𝑥,𝑦) goes

up, and if 𝑦′ is the “loser,” its “rating” 𝑟𝜃 (𝑥,𝑦′) goes down.

The final problem is that the reward model isn’t perfect. You may be familiar

with examples of images of (say) dogs that have been manipulated to fool a neural

network into classifying it as (say) a cat. Similarly, there’s a danger that the above

training will just train the language model (𝑃𝜙 ) to generate bad outputs that trick

the reward model (𝑟𝜃 ) into saying they are good. So a third term is added to the

objective function (8.2) to keep the model close to the original (pre-RLHF) model:

𝐿 =
∑︁
𝑤

𝛾 log 𝑃𝜙 (𝑤) +
∑︁
𝑥

∑︁
𝑦

𝑃𝜙 (𝑦 | 𝑥) 𝑟𝜃 (𝑥,𝑦) − 𝛽 KL[𝑃𝜙 ∥𝑃𝜙0
]

where KL is theKullback-Leibler divergence, a measure of how different two prob-

ability distributions are. That, finally, is the objective function used to fine-tune

InstructGPT and (as far as I know) ChatGPT.
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8.4 Limitations of language models
Current research on language models for generation focuses on a number of

limitations:

• Hallucination, where generated text is fluent but factually incorrect.

• Sycophany, where the model is too willing to agree with the user.

• Limited ability to plan text (e.g., generating a sentence that ends with a

specified word)

Here, I would like to focus on limitations of transformers at solving reasoning

tasks.

Recall that a transformer decoder takes as input words 𝑤1 · · ·𝑤𝑡−1 and out-

puts a probability distribution over the next word, 𝑃 (𝑤𝑡 | 𝑤1 · · ·𝑤𝑡−1). The com-

putation of this probability distribution has a fixed depth. If the computation is

thought of as a graph where each node has a value that is a function of the val-

ues of its in-neighbor nodes, then the length of the longest path from an input

node to an output node is called the depth of the computation graph, and in a

transformer this depth is independent of 𝑡 . (By contrast, in an RNN, there is a

path that goes from 𝑤1 through h(1) , . . . , h(𝑡 ) to the output, so the depth is 𝑂 (𝑡).
This implies that if you ask the language model a question and expect it to an-

swer immediately, there is a limit on how computationally difficult the question

can be. For example, if 𝑥 is an addition problem like 123+123=, you know from

doing grade-school addition that generating each digit of the answer requires a

fixed amount of work (add two digits and possibly a carried 1). So you might

expect transformers to be able to learn to do addition, and they can. But if 𝑥 is

a multiplication problem like 123*123=, you know that grade-school multiplica-

tion requires more work:

123
×123
369
246
123
15129

In total there are 𝑂 ( |𝑥 |2) steps, so generating each digit of 𝑦 takes an average

of 𝑂 ( |𝑥 |) steps. So it should come as no surprise that transformers seem to be

unable to learn to multiply numbers beyond a few digits.

Other examples (Wei et al., 2022) include:

• The cafeteria had 23 apples. If they used 20 to make lunch and bought 6

more, how many apples do they have?

• Is the following sentence plausible? “Joao Moutinho caught the screen pass

in the NFC championship.”

• A coin is heads up. Maybelle flips the coin. Shalonda does not flip the coin.

Is the coin still heads up?
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The currently popular solution is called chain-of-thought or a scratchpad: if

you don’t require the answer to appear immediately, but allow intermediate sym-

bols to be generated first, then these symbols effectively increase the depth of the

computation, increasing the model’s reasoning ability. Continuing with the mul-

tiplication example, perhaps it helps to write (as in grade-school multiplication)

the numbers 369+246+123= before generating the final answer 15129. Formally,

allowing intermediate symbols makes transformers as powerful as Turing ma-

chines (Pérez, Barceló, and Marinkovic, 2021). Practically, this has been shown to

actually improve performance on reasoning tasks. In principle we could fine-tune

the model to generate intermediate symbols, but the more common approach is

to design prompts with instructions like “Let’s think step by step” and/or demon-

strations of thinking step-by-step. For example (Wei et al., 2022):

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each

can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis

balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and

bought 6 more, how many apples do they have?

How to make transformers learn to take intermediate steps silently is there-

fore an important goal for current research.
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