
Chapter 7

Sequence Alignment

7.1 Problem

The next problem we will tackle is similar to sequence labeling. Previously, we were given a collection of
sequence pairs: a sequence of words and a sequence of labels. Suppose that we are given a collection of
sequence pairs, but not necessarily of the same length, and we want to be able to predict one from the
other. For example:

• Given misspelled words (or “alternatively spelled” words like teh, pleez, etc.) and their correct
spellings, can we learn to correct the spelling of new words?

• Given Japanese words that have been borrowed from English, and the original English words, can
we learn to predict the English origin of other English loanwords in Japanese?

• Given English words and their pronunciations, can we learn to pronounce new English words?

7.2 Spelling correction

Let’s think about spelling correction, although exactly the same machinery might work well for the other
examples mentioned above as well. You may already be familiar with one possible method that can be
thought of as a sequence alignment problem: string edit distance or Levenshtein distance. The string edit
distance is defined in terms of three basic operations:

• Insert a symbol, with cost 1

• Delete a symbol, with cost 1

• Change a symbol into a difference symbol, with cost 1

The minimum edit distance problem is: Given two strings w and w ′, find the minimum number of oper-
ations needed to transform w into w ′.

We can represent these operations using a finite-state transducer. Something new that we will use
below is transitions that have empty (ϵ) input or output.
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a : ϵ / 1
2b : ϵ / 1

2

ϵ : a /
1

2

ϵ : b /
1

2

a : a / 1

b : b / 1
a : b / 1

2b : a / 1
2

</s> : </s> / 1

This is for the alphabet {a,b}; larger alphabets would need more arcs. We gave transitions with edits
a weight of 1

2 , which is arbitrary. Then the weight of any path is 2−k , where k is the number of edits. Note
that this is a weighted FST but not a probabilistic FST.

A consequence of the presence of empty transitions is that given an input string w and an output
string w ′, there is more than one path through the FST that maps w to w ′. For example, to change abba
into baba, a couple of ways are:

a b b a

b a b a
2 substitutions

a b b a

b a b a
1 deletion, 1 insertion

So (as you already know if you’re familiar with the minimum edit distance problem) computing the num-
ber of edits is not trivial. We can compose this FST with automata representing w and w ′ to obtain a FST
that accepts only w as input and outputs only w ′, and every path through the FST represents a possible
sequence of edits. Running the Viterbi algorithm on this FST to find the highest-weight path is exactly
the same as the standard minimum edit distance algorithm.

But there are a number of problems we need to solve:

• How do we use this for spelling correction or text normalization? That is, given w ′, find the word
w that it is closest to, taking into account that some words are more likely than others?

• What if the three operations shouldn’t have equal weight, or equal weight for each symbol? How
can we learn them from data?

• What if don’t even have access to a gold-standard dictionary or text?

We will tackle these problems using probability models (which edit distance is not). In order for a
weighted FST with empty-input transitions to be probabilistic, we need to impose the following restric-
tion: for each state, all outgoing transitions either all have empty input, or none of them do. Then, a
weighted FST is probabilistic if, for each state, all outgoing transitions with the same input symbol sum
to one. (If we allowed nonempty-input transitions and empty-input transitions to mix, it would be tricky
to define the sum-to-one constraint.) That means that we need to modify the above FST into the follow-
ing:
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ϵ : a / p(a | ϵ)
ϵ : b / p(b | ϵ)

ϵ : ϵ / p(ϵ | ϵ)

a : ϵ / p(ϵ | a)
b : ϵ / p(ϵ | b)
a : a / p(a | a)
b : b / p(b | b)
a : b / p(b | a)
b : a / p(a | b)

</s> : </s> / 1

We’ve replaced the numerical weights with parameters p(σ′ |σ) that now need to be estimated. For each
σ (including ϵ), we should have

∑
σ′ p(σ′ |σ) = 1 (where the summation includes σ′ = ϵ).

When intersected with FSTs representing an input string w and an output string w ′, we get something
that looks like this (taking w = abba and w ′ = baba):

ϵ : ϵ

ϵ
:b

ϵ : ϵ

ϵ
:a

ϵ : ϵ

ϵ
:b

ϵ : ϵ

ϵ
:a

ϵ : ϵ

a : ϵ ϵ : ϵ

ϵ
:b

a : ϵ

a : b

ϵ : ϵ

ϵ
:a

a : ϵ

a : a

ϵ : ϵ

ϵ
:b

a : ϵ

a : b

ϵ : ϵ

ϵ
:a

a : ϵ

a : a

ϵ : ϵ

b : ϵ ϵ : ϵ

ϵ
:b

b : ϵ

b : b

ϵ : ϵ

ϵ
:a

b : ϵ

b : a

ϵ : ϵ

ϵ
:b

b : ϵ

b : b

ϵ : ϵ

ϵ
:a

b : ϵ

b : a

ϵ : ϵ

b : ϵ ϵ : ϵ

ϵ
:b

b : ϵ

b : b

ϵ : ϵ

ϵ
:a

b : ϵ

b : a

ϵ : ϵ

ϵ
:b

b : ϵ

b : b

ϵ : ϵ

ϵ
:a

b : ϵ

b : a

ϵ : ϵ

a : ϵ ϵ : ϵ

ϵ
:b

a : ϵ

a : b

ϵ : ϵ

ϵ
:a

a : ϵ

a : a

ϵ : ϵ

ϵ
:b

a : ϵ

a : b

ϵ : ϵ

ϵ
:a

a : ϵ

a : a

ϵ : ϵ

</s> : </s>

where each edge labeled σ : σ′ has probability p(σ′ |σ).
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7.3 Training

Because of the nondeterminism discussed above, we can’t just train the weights by counting and dividing.
This is an example of a partially-supervised learning problem: we are given w and w ′, but we’re not given
the specific sequence of operations used to get from w to w ′. So, just as when we did unsupervised
sentence clustering and topic modeling, we need to use EM.

In the following, let Mw,w ′ be the FST formed by composing M with FSTs for w and w ′. The four-letter
example from above will be unwieldy to illustrate training, so let’s switch to two shorter string pairs:

ϵ : ϵ

ϵ
:a

ϵ : ϵ

a : ϵ ϵ : ϵ

ϵ
:a

a : ϵ

a : a

ϵ : ϵ

</s> : </s>

ϵ : ϵ

ϵ
:b

ϵ : ϵ

a : ϵ ϵ : ϵ

ϵ
:b

a : ϵ

a : b

ϵ : ϵ

</s> : </s>

w = a

w ′ = a

w = a

w ′ = b

We initialize the parameters uniformly:

p(a | a) = 1/3 p(a | b) = 1/3 p(a | ϵ) = 1/3

p(b | a) = 1/3 p(b | b) = 1/3 p(b | ϵ) = 1/3

p(ϵ | a) = 1/3 p(ϵ | b) = 1/3 p(ϵ | ϵ) = 1/3

7.3.1 Hard EM

E step: In hard EM, all we do for the E step is to choose the single best path. That’s just the Viterbi
algorithm. For both training examples, that’s the path that has no insertions or deletions. The counts for
the two training examples are:

c(ϵ,ϵ) = 2 c(ϵ,ϵ) = 2

c(a,a) = 1 c(a,b) = 1

Summing over training examples, we get

c(a,a) = 1

c(a,b) = 1

c(ϵ,ϵ) = 4
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M step: Count the number of times each parameter occurs along all the best paths and normalize. So

c(ϵ,ϵ) = 4/4 = 1

c(a,a) = 1/2

c(a,b) = 1/2

repeat
◃ E step
for each string pair w, w ′ do

compute best path through Mw,w ′

for each parameter p(σ′ |σ) along path do ◃ σ or σ′ can be ϵ
c(σ,σ′) ← c(σ,σ′)+1

end for
end for
◃ M step
for all σ do

Z ←∑
σ′ c(σ,σ′)

for all σ′ do
p(σ′ |σ) ← c(σ,σ′)/Z

end for
end for

until done

7.3.2 Real slow EM

If we want to do real EM, we need to compute the probability of each path, given w and w ′, and pretend
that we saw each path that many times. For each of our training examples, there are three paths.

first example second example
path weight count path weight count
ϵ : ϵ a : ϵ ϵ : a ϵ : ϵ 1/81 1/5 ϵ : ϵ a : ϵ ϵ : b ϵ : ϵ 1/81 1/5
ϵ : ϵ a : a ϵ : ϵ 1/27 3/5 ϵ : ϵ a : b ϵ : ϵ 1/27 3/5
ϵ : a ϵ : ϵ a : ϵ ϵ : ϵ 1/81 1/5 ϵ : b ϵ : ϵ a : ϵ ϵ : ϵ 1/81 1/5

Summing over training examples and then normalizing, we get

c(a,a) = 3/5 p(a | a) = 3/10

c(a,b) = 3/5 p(b | a) = 3/10

c(a,ϵ) = 4/5 p(ϵ | a) = 4/10 = 2/5

c(ϵ,a) = 2/5 p(a | ϵ) = 2/24 = 1/12

c(ϵ,b) = 2/5 p(b | ϵ) = 2/24 = 1/12

c(ϵ,ϵ) = 4 p(ϵ | ϵ) = 20/24 = 5/6

◃ E step
for each string pair w, w ′ do

Z ← total weight of all paths through Mw,w ′
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for each path π through Mw,w ′ do
for each edge e along π do

for each parameter p(σ′ |σ) on e do ◃ σ or σ′ can be ϵ
c(σ,σ′) ← c(σ,σ′)+weight(π)/Z

end for
end for

end for
end for
◃ M step: same as above

But don’t implement this algorithm! The loops over all paths give it an exponential time complexity.

7.3.3 Real fast EM

The way to make this efficient is analogous to the way that we made the Viterbi algorithm efficient using
dynamic programming. First, observe that the slow algorithm visits each edge many times, each time
adding a (usually very small) number to c(σ,σ′). We can reorder the loops so that we visit each edge e
exactly once, and the increment that we add to c(σ,σ′) is the total weight of all the paths that go through
e. Call this γ[e].
◃ E step
for each string pair w, w ′ do

Z ← total weight of all paths through Mw,w ′

for each edge e of Mw,w ′ do
γ[e] ← 0
for each path π that goes through e do

γ[e] ← γ[e]+weight(π)
end for
for each parameter p(σ′ |σ) on e do ◃ σ or σ′ can be ϵ

c(σ,σ′) ← c(σ,σ′)+γ[e]/Z
end for

end for
end for
◃ M step: same as above

How do we calculate Z ? This is a simple extension of the Viterbi algorithm. If Viterbi finds the max-
imum weight of all paths because at each step it performs a maximum operation at each step, then we
can find the sum of the weights of all paths if at each step we perform a sum operation.

procedure FORWARD(M)
α[q0] ← 1
α[q] ← 0 for q ̸= q0
for each state q ′ in topological order do

for each incoming transition q → q ′ with weight p do
α[q ′] ←α[q ′]+α[q]×p

end for
end for
return α

end procedure
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q0 qα[q] q q fβ[q]

(a) (b)

q0 q q ′ q fα[q]
σ : σ′ / p

β[q ′]

(c)

Figure 7.1: (a) The forward probability α[q] is the total weight of all paths from the start state to q . (b)
The backward probability β[q] is the total weight of all paths from to q to the final state. (c) The total
weight of all paths going through an edge q → q ′ with weight p is α[q]×p ×β[q ′].

The α[q] are called forward probabilities. Each is the total weight of all paths from the start state to q (see
Figure 7.1a). So Z is the forward probability of the final state.

ϵ : ϵ

ϵ
:a

ϵ : ϵ

a : ϵ ϵ : ϵ

ϵ
:a

a : ϵ

a : a

ϵ : ϵ

</s> : </s>

1

1/3

1/9

1/27

1/3

1/9

5/27

5/81

5/81

ϵ : ϵ

ϵ
:b

ϵ : ϵ

a : ϵ ϵ : ϵ

ϵ
:b

a : ϵ

a : b

ϵ : ϵ

</s> : </s>

1

1/3

1/9

1/27

1/3

1/9

5/27

5/81

5/81
w = a

w ′ = a

w = a

w ′ = b

It’s easy to do the same computation in reverse, to obtain backward probabilities β[q], each of which
is the total weight of all paths from q to the final state (see Figure 7.1b).

procedure BACKWARD(M)
β[q f ] ← 1
β[q] ← 0 for q ̸= q0
for each state q in reverse topological order do
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for each outgoing transition q → q ′ with weight p do
β[q] ←β[q]+p ×β[q ′]

end for
end for
return β

end procedure
If it’s not convenient to iterate over the outgoing transitions of a state, then this version is equivalent:

procedure BACKWARD(M)
β[q f ] ← 1
β[q] ← 0 for q ̸= q0
for each state q ′ in reverse topological order do

for each incoming transition q → q ′ with weight p do
β[q] ←β[q]+p ×β[q ′]

end for
end for
return β

end procedure

ϵ : ϵ

ϵ
:a

ϵ : ϵ

a : ϵ ϵ : ϵ

ϵ
:a

a : ϵ

a : a

ϵ : ϵ

</s> : </s>

5/81

4/27

1/9

0

1/27

1/9

1/3

1

1

ϵ : ϵ

ϵ
:b

ϵ : ϵ

a : ϵ ϵ : ϵ

ϵ
:b

a : ϵ

a : b

ϵ : ϵ

</s> : </s>

5/81

4/27

1/9

0

1/27

1/9

1/3

1

1
w = a

w ′ = a

w = a

w ′ = b

Notice that the backward probability of the initial state equals the forward probability of the final state –
this must always be true, and is a good way to check for errors.

What do backward probabilities buy us? If e is a transition q → q ′ with weight p, we can compute
γ[e]: it is α[q]×p×β[q ′] (see Figure 7.1c). If you prefer to think about it in equations, let π<e be the prefix
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of path π up to but not including e, and similarly for π>e ; then

γ[e] =
∑

π
weight(π)

=
∑

π
weight(π<e )×p ×weight(π>e )

=
(∑

π
weight(π<e )

)
×p ×

(∑

π
weight(π>e )

)

=α[q]×p ×β[q ′].

ϵ : ϵ

ϵ
:a

ϵ : ϵ

a : ϵ ϵ : ϵ

ϵ
:a

a : ϵ

a : a

ϵ : ϵ

</s> : </s>

4/81 1/81 0

1/81

1/81 1/81

1/81

1/27

5/81

ϵ : ϵ

ϵ
:b

ϵ : ϵ

a : ϵ ϵ : ϵ

ϵ
:b

a : ϵ

a : b

ϵ : ϵ

</s> : </s>

4/81 1/81 0

1/81

1/81 1/81

1/81

1/27

5/81

w = a

w ′ = a

w = a

w ′ = b

To get the probability that each edge is used, given w and w ′, we divide each weight by Z .

ϵ : ϵ

ϵ
:a

ϵ : ϵ

a : ϵ ϵ : ϵ

ϵ
:a

a : ϵ

a : a

ϵ : ϵ

</s> : </s>

4/5 1/5 0

1/5

1/5 1/5

1/5

3/5

1

ϵ : ϵ

ϵ
:b

ϵ : ϵ

a : ϵ ϵ : ϵ

ϵ
:b

a : ϵ

a : b

ϵ : ϵ

</s> : </s>

4/5 1/5 0

1/5

1/5 1/5

1/5

3/5

1

w = a

w ′ = a

w = a

w ′ = b

Then, sum up the counts for each parameters. You can check that it comes out exactly the same as
when we enumerated all the paths.

Putting it all together, we get the forward-backward algorithm:
◃ E step
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for each string pair w, w ′ do
α← FORWARD(Mw,w ′ )
β← BACKWARD(Mw,w ′ )
Z ←α[q f ]
for each edge e = q → q ′ of Mw,w ′ do

p ← weight of e
γ[e] ←α[q]×p ×β[q ′]
for each parameter p(σ′ |σ) on e do ◃ σ or σ′ can be ϵ

c(σ,σ′) ← c(σ,σ′)+γ[e]/Z
end for

end for
end for
◃ M step: same as above

7.4 Aligning and decoding

Once we’ve trained the model, what do we do with it? Given w and w ′, we can try to find the most
probable way of getting from w to w ′. This is useful, for example, if we are interested in aligning w with
w ′ to see which symbols are in correspondence. To do that, form Mw,w ′ exactly as before, and run the
Viterbi algorithm.

Or, given w ′, we can find the most probable w . This problem is sometimes called decoding. Previ-
ously, we composed the edit-model FST with a FST for w on the input side and a FST for w ′ on the output
side. Now, on the input side, we compose with a language model. This FST can input any string but only
output w ′, and the probability of each path is

weight(π) = P (w)P (π | w).

Then use the Viterbi algorithm to find the best path. The most probable w should be

w∗ = arg max
w

P (w | w ′)

= arg max
w

P (w)P (w ′ | w)

= arg max
w

P (w)
∑

π|π outputs w ′
P (π | w),

but that is unfortunately an NP-hard problem! We can find the best path, and that is usually good enough.
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