Propositions as types (graduate only)
Now would be a good time to bring up the Curry-Howard isomorphism (pages 108-109). Forget about type systems for a moment and think about propositional logic.
We define a syntax of formulas:
φ ::= x
true
false
φ → φ
φ ∧ φ
φ ∨ φ
And inference rules for Γ ⊢ φ
(“under the assumptions in Γ
, φ
is provable”):
――――――――
Γ ⊢ true
――――――――
Γ, φ ⊢ φ
Γ, φ1 ⊢ φ2
―――――――――――― (→ introduction)
Γ ⊢ φ1 → φ2
Γ ⊢ φ1 → φ2 Γ ⊢ φ1
―――――――――――――――――――― (→ elimination, or modus ponens)
Γ ⊢ φ2
Γ ⊢ φ1 Γ ⊢ φ2
―――――――――――――― (∧ introduction)
Γ ⊢ φ1 ∧ φ2
Γ ⊢ φ1 ∧ φ2
――――――――――― i ∈ {1,2} (∧ elimination)
Γ ⊢ φi
Γ ⊢ φi
――――――――――― i ∈ {1,2} (∨ introduction)
Γ ⊢ φ1 ∨ φ2
Γ ⊢ φ1 ∨ φ2 Γ ⊢ φ1 → φ Γ ⊢ φ1 → φ
――――――――――――――――――――――――――――――――――――――― (∨ elimination)
Γ ⊢ φ
This is a restriction of propositional logic called intuitionistic propositional logic that doesn’t have negation.
The Curry-Howard isomorphism is a correspondence between proof systems in logic and type systems in programming language theory. Notice the similarity between these rules and the typing rules we’ve built up so far.
proof systems | type systems |
---|---|
formulas φ |
types T |
assumptions Γ |
contexts Γ |
Γ ⊢ φ |
Γ ⊢ t:T for some t |
→ |
→ |
∧ |
× |
∨ |
+ |
true |
unit |
This naturally leads to a number of questions, like:
- What does
false
correspond to? The empty type, usually written⊥
. - What do
∀
and∃
correspond to? - What does negation correspond to?