
Course Project 3

String Transformations

CSE 30151 Spring 2017

Version of April 5, 2017

In CP2, you built a regular expression matcher, which reads lines of input and prints
each line that matches the regular expression. But just printing the line out is boring; can
we do something more useful with it?

For example, in computational linguistics, it might be useful to write a regular ex-
pression that matches plural nouns (like computers, theories), but it would be more
useful to transform plural nouns into their parts (computers to computer+s, theories to
theory+s). In some languages, these transformations can become quite complex.

The Unix tools tr and sed can transform strings, but there are limits to both: tr cannot
do the simple plural transformation described above; sed can, but it, too, has trouble with
contextual transformations like “capitalize all words inside parentheses.”

In this project, we’ll use the machinery of regular expressions, extended with one new
operator, to perform such transformations, upgrading mere to a tool called more (match
and output using regular expression).1 Although this document is long, the implementation
is all based closely on CP1–2 and actually requires writing relatively little code.

Getting started

We’ve made some updates, so please have one team member run the commands

git pull https://github.com/ND-CSE-30151-SP17/theory-project-skeleton

git push

and then other team members should run git pull.
You will need a correct solution for CP1 and CP2 for this project. You may

use the official solution or another team’s solution, as long as you properly cite your source.

1There’s already a Unix tool called more, but who uses that anymore?

1

CSE 30151 Spring 2017 Course Project 3

Overview

We will enable regular expressions to perform transformations by adding a new operator,
transduction (:), which we give lower precedence than union (|). An expression α:β means
“read a string matching α and write a string matching β.” Read, or try out, the following
examples (user input in blue, comments in gray):

$ bin/more "0:1" match a single 0 and invert it
0

1

1 rejected because not 0
000 rejected because not 0
101 rejected because not 0

$ bin/more "(0:1)|(1:0)" match a single bit and invert it
0

1

1

0

000 rejected because more than one bit
101 rejected because more than one bit

$ bin/more "((0:1)|(1:0))*" invert all bits
0

1

1

0

000

111

101

010

$ bin/more "(0|1)*(0:1)(1:0)*" invert all bits from the last 0 rightward
0

1

1 rejected because no 0

000

001

101

010

Another way of describing the last expression is that it adds one to a binary number. This
is an example of something that would be very difficult to do with sed.

Note that because an expression can match in more than one way, more than one output
string may be possible. For example, consider the expression (0|1)*(0:1)(0|1)*. If the

2

CSE 30151 Spring 2017 Course Project 3

parser

union
concatenation
Kleene star

intersect

singleton

breadth-first search

regular expression α

Mα

input string w

Mw

accept/reject

parser

transduction
union

concatenation
Kleene star

compose

singleton

breadth-first search

regular transduction
expression α

Mα

input string w

Mw

output string

Figure 1: Overview of CP1–2 (left) and this project (right).

input string is 000, then there are three output strings: 001, 010, and 100. In that case,
just one of them should be printed out (it doesn’t matter which).

Remember that the regular expression matcher from CP1 and CP2 worked as shown
in Figure 1 (left). This project consists of modifications to each component. In §1, you’ll
extend the parser to process regular transduction expressions. In §2, you’ll extend NFAs to
nondeterministic finite transducers (NFTs), and in §3, you’ll extend the parser semantics
to generate a NFT. In §4, you’ll extend the NFA simulator (singleton, intersection, and
breadth-first search) to simulate a NFT.

1 Regular Transduction Expressions

In this part, you’ll extend the parser for regular expressions to a parser for our extended
regular expressions, which we call regular transduction expressions.

1.1 Grammar (3 points)

The grammar from CP2 is written in the file cp3/grammar.txt. Modify this file so that
the grammar handles the transduction (:) operator. The order of operations should be
(from highest to lowest): star (*), concatenation, union (|), transduction (:). Getting the
grammar right is important, so feel free to check your answer with an instructor or TA.
When you’re satisfied with your grammar, don’t forget to commit it.

3

CSE 30151 Spring 2017 Course Project 3

1.2 Parser (5 points)

Extend your parser from CP2 to use your new grammar. The semantics of α:β should be
a call to transduce(α, β).

One tricky point is that in CP2, parseConcat stopped if the next character was | or),
or if there was no next character. These are the only possible characters that can follow
a Concat. Under the new grammar, what additional character(s) could follow a Concat?
Modify parseConcat accordingly.

For testing purposes, write a program called cp3/parse rte that parses a regular trans-
duction expression and outputs a string repesentation of the parse tree. For example,
cp3/parse rte "ab:c|d" should give

transduce(concat(symbol(a),symbol(b)),union(symbol(c),symbol(d)))

Test your program by running tests/test-cp3.sh.

2 Finite Transducers

We will implement regular transduction expressions by converting them to nondeterministic
finite transducers (NFTs). For a formal definition, please see Appendix A. Here’s an
example of a NFT that increments a binary number:

q1 q2

0 : 0

1 : 1

0 : 1

1 : 0

It looks like a NFA except that each transition is labeled a : b, where a and b are either
symbols or ε. This means that the NFT, when following the transition, reads input a and
writes output b. Suppose that the input string is 001. The accepting run for this string is:

output state input

ε q1 001

0 q1 01

01 q2 1

010 q2 ε

If there is any run that reaches the end of the input string in an accept state, then the
transducer accepts the input string. Note that, for a given input string, there may be
more than one accepting run, so there may be more than one possible output string. The
transduction recognized by a NFT M , which we write L(M), is the set of all string pairs
(u, v) such that M accepts u and outputs v.

4

CSE 30151 Spring 2017 Course Project 3

2.1 Data Structure (3 points)

Modify your NFA data structure into a data structure that represents a NFT. The main
change is that transitions should have both an input and an output. It should support the
same access operations as a NFA. It may be useful to have a function that takes a symbol

a and returns (an iterator over) all transitions of the form q
a:b−−→ r.

Modify your NFA reader/writer to read/write NFTs, in the same format as before,

except that a line for a transition q
a:b−−→ r has four fields: q, a, b, and r. For examples, see

examples/sipser-t1.nft and examples/sipser-t2.nft.

3 Parser Semantics

In this part, you’ll implement the semantic actions for the parser of Part 1.2. These are all
easy (or even trivial) modifications to functions you wrote in CP2.

3.1 Regular operations (3 points)

Modify the following NFA operations to work on NFTs. The NFA and NFT versions of
these operations are identical, except that wherever the NFA version creates a transition
q

a−→ r or q
ε−→ r, the NFT version creates q

a:a−−→ r or q
ε:ε−→ r, respectively.

• emptyset() should build a NFT recognizing ∅ (rejects everything).

• epsilon() should build a NFT recognizing {(ε, ε)}.

• symbol(a) should build a NFT recognizing {(a, a)}.

• union(M1,M2) should build a NFT that applies either M1 or M2 to the input string.

• concat(M1,M2) should build a NFT that cuts the input string into two parts and
applies M1 to the first part and M2 to the second part.

• star(M1) should build a NFT that cuts the input string into zero or more parts and
applies M1 to each of them.

You are not required to pass tests for this subpart. But if you write programs union nft,
concat nft, or star nft, then tests/test-cp3.sh will check them for you. If it says
“UNKNOWN,” this is a possible failure, but the grader will take a closer look to be sure.

3.2 Transduction (3 points)

The semantics of the transduction (:) operator should be a function that takes two NFTs,
M1 and M2, and returns the NFT that recognizes the transduction

{(u, y) | (u, v) ∈ L(M1) and (x, y) ∈ L(M2)}.

5

CSE 30151 Spring 2017 Course Project 3

Typically, this operator is used on NFTs that don’t perform any transformations, and this
is where it makes most sense. For example, if M1 only accepts and outputs a, and M2 only
accepts and outputs b, then (M1 : M2) only accepts a and outputs b.

This construction is very similar to the concatenation construction. Set all the outputs
of M1 to ε (accept every input that M1 accepts, but discard the output), and set all the
inputs of M2 to ε (output every string that M2 outputs, regardless of input). Then add ε : ε
transitions from every accept state of M1 to the start state of M2 to link them together.
For example:

a : a b : b a : ε ε : ε ε : b

M1 M2 M1 :M2

For a formal definition, please see Appendix A.
Write a function called transduce that implements the above, and write a program called

cp3/transduce nft to test it:

cp3/transduce nft nftfile nftfile

should read NFTs M1 and M2 from the two files and write M1 : M2 to stdout. Test your
program using tests/test-cp3.sh. If the automatic tester says “UNKNOWN,” this is a
possible failure, but the grader will take a closer look to be sure.

4 Simulating NFTs

In CP1, we simulated a NFA M on a string w by creating a singleton NFA that recog-
nized {w}, intersecting that withM , and then looking for an accepting path in the resulting
NFA. For NFTs, we can do something very similar:

1. Create a singleton NFT Mw that recognizes {(w,w)}; that is, it only accepts w, and
it only outputs w.

2. Compose Mw and M , making a NFT Mw ▷ M that feeds the output of Mw to the
input of M . So Mw ▷ M only accepts w and outputs what M outputs on w, but for
any other input string, it rejects.

3. So we can tell whether M accepts w by searching for any path through Mw ▷ M . If
it has one, concatenate its output symbols to form an output string.

You’ll update your NFA simulator to do these three steps in the following subparts.

6

CSE 30151 Spring 2017 Course Project 3

4.1 Singleton (1 point)

Update your NFA singleton operation to create a NFT instead, and update the test program
cp2/singleton nfa:

cp3/singleton nft w

should write to stdout the NFT that recognizes {(w,w)}. Test your program by running
tests/test-cp3.sh. If the automatic tester says “UNKNOWN,” this is a possible failure,
but the grader will take a closer look to be sure.

4.2 Composition (3 points)

The composition of two NFTs T1 and T2, which we write asM1▷M2, is the NFT recognizing

{(u,w) | (u, v) ∈ L(M1), (v, w) ∈ L(M2)}.

Composition is very similar to intersection. We build a new NFT that simulates M1

and M2 simultaneously. But whereas the intersection construction feeds the same input
string to both M1 and M2, the composition construction feeds the input string to M1 and
feeds the output of M1 into the input of M2. Figure 2 shows three examples that illustrate
the three cases of the construction. For a formal definition, please see Appendix A.

Write a function compose that implements this construction, and write a program
cp3/compose nft to test it:

cp3/compose nft nftfile nftfile

should write the composition of the two NFTs to stdout. Test your program by running
tests/test-cp3.sh. If the automatic tester says “UNKNOWN,” this is a possible failure,
but the grader will take a closer look to be sure.

4.3 Selecting the output string (3 points)

The final step is to extract an output string, if there is one. Write a function that takes a
NFT M , and returns an arbitrary string v such that (u, v) ∈ L(M); it returns a sentinel
value or raises an exception if there is none.

You can do this using breadth-first search, similar to the emptiness check from CP1
except that you have to remember the path from the start state to each state. (Actually, the
official solution for CP1 includes a function any path that more or less does this already.)
When you find a path, concatenate the output symbols along the path (omitting ε) to get
the output string.

Write a program called cp3/output nft to test your function:

cp3/output nft nftfile

7

CSE 30151 Spring 2017 Course Project 3

M1 M2 M1 ▷ M2

q1 r1
a : b q2 r2

b : c

q1q2 q1r2

r1q2 r1r2

a
: c

q1 r1
a : ε q2 r2

b : c

q1q2 q1r2

r1q2 r1r2 corrected Apr 5

a : ε a : ε

q1 r1
a : b q2 r2

ε : c

q1q2 q1r2

r1q2 r1r2

ε : c

ε : c

Figure 2: Three examples illustrating the three cases of the composition construction.

If the NFT has an accepting path, this program should write one possible output to stdout
and exit with code 0. Otherwise, it should write nothing and exit with code 1. Test your
program by running tests/test-cp3.sh.

5 Putting it together (6 points)

Write a program called cp3/more that puts all the above together. It should be called like

cp3/more rtexp

where rtexp is a regular transduction expression. See Section 1 for example runs. It should
work like this:

• Compile rtexp to a NFT M , using the parser of §1.2 with the semantic actions of §3.

• For each line w that is read from stdin:

8

CSE 30151 Spring 2017 Course Project 3

1. Convert w into a singleton NFT Mw (§4.1).
2. Compose them to form Mw ▷ M (§4.2).
3. If Mw ▷ M has an accepting path, print the output string to stdout (§4.3).

Test your program by running tests/test-cp3.sh.

Submission instructions

Your code should build and run on studentnn.cse.nd.edu. The automatic tester will clone
your repository, cd into its root directory, run make -C cp3, and run tests/test-cp3.sh.
You’re advised to try all of the above steps and ensure that all tests pass.

To submit your work: If you are working in a branch, please merge to master. Push your
repository to Github and then create a new release with tag version cp3 (note that the tag
version is not the same thing as the release title). If you are making a partial submission,
then use a tag version of the form cp3-123, indicating which parts you’re submitting.

A Formal Definitions

Nondeterministic finite transducer Let Σ be a finite alphabet, and let Σε = Σ∪{ε}.
A nondeterministic finite transducer (NFT) is a tuple (Q,Σ, δ, s, F), where Q, s, and F
are as in a NFA, and δ is a transition function

δ : Q× Σε → P(Q× Σε).

A run of a NFT starts in state s. If the NFT is in state q and the next input symbol is a:

• If δ(q, a) contains (r, b), it can read a, write b, and transition to state r, or

• If δ(q, ε) contains (r, b), it can write b and transition to state r.

The NFT accepts u while writing v iff there is a run that reads u and writes v and ends in
an accept state. We write L(M) for the transduction recognized by M ; that is,

L(M) = {(u, v) | M accepts u while writing v}.

Transduction Given

M1 = (Q1,Σ, δ1, s1, F1)

M2 = (Q2,Σ, δ2, s2, F2),

assuming that Q1 ∩Q2 = ∅, let

M1 :M2 = (Q1 ∪Q2,Σ, δ, s1, F2),

where δ is defined as follows:

9

CSE 30151 Spring 2017 Course Project 3

• For all q ∈ Q1 and a ∈ Σε, if (r, b) ∈ δ1(q, a), then (r, ε) ∈ δ(q, a).

• For all q ∈ F1, (s2, ε) ∈ δ(q, ε).

• For all q ∈ Q2 and a ∈ Σε, if (r, b) ∈ δ2(q, a), then (r, b) ∈ δ(q, ε).

• Nothing else is in δ.

Composition Given

M1 = (Q1,Σ, δ1, s1, F1)

M2 = (Q2,Σ, δ2, s2, F2),

let

M1 ▷ M2 = (Q1 ×Q2,Σ, δ, (s1, s2), F1 × F2)

where δ is defined as follows:

• For all q1, q2 ∈ Q, and a ∈ Σε, b ∈ Σ, c ∈ Σε, if (r1, b) ∈ δ1(q1, a) and (r2, c) ∈ δ2(q2, b),
then ((r1, r2), c) ∈ δ((q1, q2), a).

• For all q1, q2 ∈ Q, a ∈ Σε, if (r1, ε) ∈ δ1(q1, a), then ((r1, q2), ε) ∈ δ((q1, q2), a).

• For all q1, q2 ∈ Q, c ∈ Σε, if (r2, c) ∈ δ2(q2, ε), then ((q1, r2), c) ∈ δ((q1, q2), ε).

• Nothing else is in δ.

10

