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You will have the whole class period of 75 minutes. The exam will be open book and
open (paper) notes. No computers, smartphones, or tablets will be allowed. The exam
covers HW3–6. There will be six questions, worth 10 points each, for a total of 60 points
(10% of your grade).

Many of the practice problems below are from the textbook. The numbers are from the
3rd US edition. If the 3rd international edition has a different number, it is indicated by
“intl.”

1. Prove that a language is nonregular. You can use the pumping lemma, any results
proved in the book or in class, or any combination thereof. Like HW3 2b, 3b; Sipser
1.29ac, 1.46b (intl. 1.51b).

2. Write a CFG and a PDA that recognizes a language. For the PDA, a formal descrip-
tion (equations or state diagram) is required. Like HW4 1ab, 3b; Sipser 2.4ad, 2.6ac,
2.7ac.

3. Given some operation on languages, prove that CFLs are closed or not closed under
this operation, or that this operation turns regular languages into CFLs. Like HW5
2ab (but not as hard), 3a; Sipser 2.38 (intl. 2.50; but not as hard).

4. Prove that a language is not context-free. You can use the pumping lemma, any
results proved in the book or in class, or any combination thereof. Like HW5 1abc;
Sipser 2.30bc (intl. 2.42bc).

5. Write a Turing machine that decides a language. A formal description (equations or
state diagram) is required. Like HW6 1ab; Sipser 3.8a.

6. Prove that a kind of machine is equivalent to Turing machines. Only implementation-
level descriptions are needed, and we’ll provide a template walking you through the
proof (see next page). Like HW6 2; Sipser 3.10 (intl. 3.17).
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Example template for HW6 Q2 and its converse A Turing machine with a doubly
infinite tape is like a TM as defined in the book, but with a tape that extends infinitely
in both directions (not just to the right). Initially, the head is at the first symbol of the
input string, as usual, but there are infinitely many blanks to the left. Show that TMs with
doubly infinite tapes are equivalent to TMs.

(a) Given a standard TM S = (Q,Σ,Γ, δ, q0, qaccept, qreject), construct an implementation-
level description of a doubly-infinite TM D:

• If S’s tape is t1t2t3 · · · , where ti ∈ Γ, and h ≥ 1 is the head position, what would
the corresponding configuration of D look like?

Solution: The tape would be · · · #t1t2t3 · · · , where # is at position 0, and the
head would be at position h.

• How should D simulate reading symbol a?

Solution: Just read a.

• How should D simulate writing symbol b?

Solution: Just write b.

• How should D simulate moving to the left?

Solution: Move to the left. Then if the head is on #, move back to the right.

• How should D simulate moving to the right?

Solution: Just move to the right.

(b) Given a doubly-infinite TMD = (Q,Σ,Γ, δ, q0, qaccept, qreject), construct an implementation-
level description of a standard TM S:

• If D’s tape is · · · t−2t−1t0t1t2 · · · , and h is the head position, what would the
corresponding configuration of S look like?

Solution: The tape would be #t` · · · tr · · · , where ` is the leftmost nonblank
square in D’s tape and r is the rightmost nonblank square in D’s tape.

• How should S simulate reading symbol a?

Solution: Just read a.

• How should D simulate writing symbol b?

Solution: Just write b.

• How should S simulate moving to the left?

Solution: Move to the left. Then if the head is on #, insert a blank symbol
immediately after #, shifting all other symbols to the right, and leave the head
on the new blank cell.

• How should S simulate moving to the right?

Solution: Just move to the right.
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