Homework 1: Strings and languages

Theory of Computing (CSE 30151), Spring 2023
Due: 2023-01-27 11:59pm

Instructions

- Create a PDF file (or files) containing your solutions. You can write your solutions by hand, but please scan them into a PDF.
- Please name your PDF file(s) as follows to ensure that the graders give you credit for all of your work:
- If you're making a complete submission, name it netid-hw1.pdf, where netid is replaced with your NetID.
- If you're submitting some problems now and want to submit other problems later, name it netid-hw1-123.pdf, where 123 is replaced with the problem number(s) you are submitting at this time.
- Submit your PDF file(s) in Canvas.

Problems (10 points each)

1. Proof practice.

(a) Convert this paragraph proof to a statement-reason proof. Please be sure to write which statement(s) each statement depends on.

To show: If s is a string, every substring of a substring of s is a substring of s.

Proof: Let y be a substring of s, that is, $s=x y z$ for some x, z; and let v be a substring of y, that is, $y=u v w$ for some u, w. Then $s=x u v w z$, so v is a substring of s.
(b) Convert this statement-reason proof to a paragraph proof.

To show: If w is a string, every prefix of a suffix of w is a suffix of a prefix of w.

1. v is a suffix of $w \quad$ Given
2. y is a prefix of $v \quad$ Given
3. $\exists x$ s.t. $x v=w \quad$ (1), def. suffix
4. $\exists z$ s.t. $y z=v \quad$ (2), def. prefix
5. $x y z=w \quad$ (3), (4), substitution
6. $x y$ is a prefix of w (5), def. prefix
7. y is a suffix of $x y \quad(6)$, def. suffix
8. String homomorphisms. If Σ and Γ are finite alphabets, define a string homomorphism to be a function $\phi: \Sigma^{*} \rightarrow \Gamma^{*}$ that has the property that for any $u, v \in \Sigma^{*}, \phi(u v)=\phi(u) \phi(v)$.
For example, the function $\phi:\{0, \ldots, 9, \mathrm{~A}, \ldots, \mathrm{~F}\}^{*} \rightarrow\{0,1\}^{*}$ that converts a hexadecimal number with $n \geq 0$ digits into a binary number with $4 n$ bits is a string homomorphism:

$$
\begin{aligned}
\phi(\varepsilon) & =\varepsilon \\
\phi(0) & =0000 \\
\phi(\mathrm{~A}) & =1010 \\
\phi(\mathrm{CAB}) & =110010101011
\end{aligned}
$$

Intuitively, a string homomorphism does a "search and replace" where each symbol is replaced with a (possibly empty) string. Prove this more formally: that is, prove that if ϕ is a string homomorphism, then for any $w=w_{1} \cdots w_{n}$ (where $n \geq 0$ and $w_{j} \in \Sigma$ for $1 \leq j \leq n$), we have

$$
\begin{equation*}
\phi(w)=\phi\left(w_{1}\right) \cdots \phi\left(w_{n}\right) . \tag{*}
\end{equation*}
$$

Use induction on n.
(a) State and prove the base case $(n=0)$.
(b) Assume that $\left({ }^{*}\right)$ is true for $n=i$ and prove $\left({ }^{*}\right)$ for $n=i+1$.

You may assume the following facts about strings:

Added on 2023-01-23

- For all $x \in \Sigma^{*}, x \varepsilon=x$ and $\varepsilon x=x$.
- For all $x, y, z \in \Sigma^{*}$, if $x z=y z$ then $x=y$.
- For all $x, y, z \in \Sigma^{*}$, if $x y=x z$ then $y=z$.

3. Finite and cofinite. Let $\Sigma=\{\mathrm{a}, \mathrm{b}\}$. Define FINITE to be the set of all finite languages over Σ, and let

$$
\text { coFINITE }=\{L \mid \bar{L} \in \text { FINITE }\}
$$

(where, for any language L over Σ, \bar{L} is the complement of L, that is, $\Sigma^{*} \backslash L$). For example, Σ^{*} is in coFINITE because its complement is \emptyset, which is finite.
(Please think carefully about this definition, and note that coFINITE isn't the same thing as FINITE.)
(a) Are there any languages over Σ in FINITE \cap coFINITE? Prove your answer.
(b) Are there any languages over Σ that are not in FINITE \cup coFINITE? Prove your answer.

