Homework 2: DFAs and NFAs

Theory of Computing (CSE 30151), Spring 2023
Due 2023-02-03 at 11:59pm

Instructions

- Create a PDF file (or files) containing your solutions. You can write your solutions by hand, but please scan them into a PDF.
- Please name your PDF file(s) as follows to ensure that the graders give you credit for all of your work:
- If you're making a complete submission, name it netid-hw2.pdf, where netid is replaced with your NetID.
- If you're submitting some problems now and want to submit other problems later, name it netid-hw2-123.pdf, where 123 is replaced with the problem numbers you are submitting at this time.
- Submit your PDF file(s) in Canvas.

Problems (10 points each)

1. Designing finite automata Define, for all $k>0$,
$D_{k}=\left\{w \in\{0, \ldots, 9\}^{*} \mid w\right.$ is the decimal representation of a multiple of $\left.k\right\}$,
where ε is considered to represent the number 0 . For example, the strings ε, 0,88 , and 088 all belong to D_{2}, but 99 and 099 do not.
(a) Write a DFA D_{2}.
(b) Write a DFA for D_{3}.
(c) Prove that D_{6} is regular. An explicit DFA is not necessary.
2. Nondeterminism Consider the following language:

$$
\begin{aligned}
L_{2}=\left\{u v \mid u, v \in\{\mathrm{a}, \mathrm{~b}\}^{*}\right. & , u \text { contains an even number of a's, and } \\
& v \text { contains an even number of b's }\}
\end{aligned}
$$

Note that as long as there is some way of cutting a string into u and v so as to satisfy the constraints, it's in L_{2}. So ba $\in L_{2}$, because $u=\mathrm{b}$ has an even number (0) of a's and $v=$ a has an even number (0) of b's. But ab $\notin L_{2}$, because every way of cutting it violates a constraint:

$$
\begin{array}{llll}
u=\varepsilon & v & =\mathrm{ab} & \\
u=\mathrm{ab} & & v=\varepsilon & \\
u \text { has odd number of } \mathrm{b} ' \mathrm{~s} \\
u=\mathrm{a} & & v=\mathrm{b} & \\
\text { both } u \text { and } v \text { violate a constraint }
\end{array}
$$

(a) Write an NFA N_{2} that recognizes L_{2}.
(b) For $n=1, \ldots, 4$, show the accepting path (as a sequence of states) for bab n through N_{2}, and show where the boundary between u and v occurs.
(c) Convert N_{2} to a DFA M_{2} using the subset construction (Theorem 1.39).
(d) For $n=1, \ldots, 4$ show the accepting path for bab n through M_{2}. Does M_{2} "know" where the boundary between u and v is?
3. Procrustean closure properties. Let Σ be an alphabet, and let $L_{3}=$ \{theory, of, computing\} be an example language.
(a) For any $w=w_{1} w_{2} \cdots w_{n-1} w_{n}$, define

$$
\operatorname{STRETCH}\left(w_{1} w_{2} \cdots w_{n}\right)=w_{1} w_{1} w_{2} w_{2} \cdots w_{n-1} w_{n-1} w_{n} w_{n}
$$

This induces an operation on languages,

$$
\operatorname{STRETCH}(L)=\{\operatorname{STRETCH}(w) \mid w \in L\}
$$

For example,

$$
\operatorname{STRETCH}\left(L_{3}\right)=\{\text { tthheeoorryy, ooff, ccoommppuuttiinngg }\}
$$

Prove that if L is a regular language, then $\operatorname{STRETCH}(L)$ is also regular.
(b) For any $w=w_{1} w_{2} \cdots w_{n-1} w_{n}$ with $n \geq 2$, define

$$
\operatorname{CHOP}\left(w_{1} w_{2} \cdots w_{n-1} w_{n}\right)=w_{2} \cdots w_{n-1}
$$

This induces an operation on languages,

$$
\mathrm{CHOP}=\{\operatorname{CHOP}(w) \mid w \in L \text { and }|w| \geq 2\}
$$

For example,

$$
\mathrm{CHOP}\left(L_{3}\right)=\{\text { heor }, \varepsilon, \text { omputin }\}
$$

Prove that if L is a regular language, then $\operatorname{CHOP}(L)$ is also regular.

