Homework 4: Context-free languages

Theory of Computing (CSE 30151), Spring 2023
Due: 2023-02-24 11:59pm

Instructions

- Create a PDF file (or files) containing your solutions. You can write your solutions by hand, but please scan them into a PDF
- Please name your PDF file(s) as follows to ensure that the graders give you credit for all of your work:
- If you're making a complete submission, name it netid-hw4.pdf, where netid is replaced with your NetID.
- If you're submitting some problems now and want to submit other problems later, name it netid-hw4-123.pdf, where 123 is replaced with the problem number(s) you are submitting at this time.
- Submit your PDF file(s) in Canvas.

Problems (10 points each)

1. Arithmetic expressions. Consider the grammar G_{4} (page 105) for arithmetic expressions, with start symbol E :

$$
\begin{aligned}
& E \rightarrow E+T \mid T \\
& T \rightarrow T * F \mid F \\
& F \rightarrow(E)|\mathrm{a}| \mathrm{b} \mid \mathrm{c}
\end{aligned}
$$

(a) [cf. Exercise 2.1] Give derivations for the following strings. Although we didn't cover derivation trees in class, if you prefer to write your derivations as trees, you may.
i. $a+b+c$
ii. $a * b+c$
iii. $a *(b+c)$
(b) Modify G_{4} to allow an exponentiation operator \uparrow.

- It should have higher precedence than multiplication; that is, in the derivation of the string $\mathrm{a} * \mathrm{~b} \uparrow \mathrm{c}$, there should be a nonterminal that rewrites to $\mathrm{b} \uparrow \mathrm{c}$, and there should not be a nonterminal that rewrites to $\mathrm{a} * \mathrm{~b}$.
- It should be (unlike * and +) right-associative; that is, in the derivation of the string $\mathrm{a} \uparrow \mathrm{b} \uparrow \mathrm{c}$, there should be a nonterminal that rewrites to $\mathrm{b} \uparrow \mathrm{c}$, and there should not be a nonterminal that rewrites to $\mathrm{a} \uparrow \mathrm{b}$.

2. Write a PDA for the language

$$
L_{2}=\left\{w \in\{2, \overline{1}\}^{*} \mid w \text { has twice as many } \overline{1} ' s \text { as } 2 \text { 's }\right\} .
$$

In other words, if we treat $\overline{1}$ as -1 , the total of all the symbols should be zero. For example, $\overline{1} 2 \overline{1} \in L_{2}$, but $2 \overline{1} 2 \overline{1} \notin L_{2}$. Please add a brief explanation of why your PDA works.
3. [Exercise 2.6b] Write both a PDA and a CFG for the language

$$
L_{3}=\overline{\left\{0^{n} 1^{n} \mid n \geq 0\right\}} .
$$

For example, $000111 \notin L_{3}$. Please add a brief explanation of why they work.
Hint: First prove that this is equal to $\left\{0^{m} 1^{n} \mid m \neq n\right\} \cup \overline{0^{*} 1^{*}}$.

