
Final Exam Study Guide

CSE 30151 Spring 2024

Exam date: 2023-05-06 10:30am–12:30pm in 136 DeBartolo Hall

The cover page of the exam will look like this.

Name:

NetID:

• This exam has eight questions, worth 15 points each, for a total of 120 points
(20% of your grade).

• You may use your textbook and paper notes, but computers, smartphones,
and tablets are not allowed.

• You may use the textbook, lectures, and lecture notes for this course without
citation. However, you may not copy or quote from any other materials in
your notes that you are not the author of.

• On this page, please write your name and NetID, but please don’t write any
solutions. On the remaining pages, front and back, please write your solutions,
but please don’t write your name.
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Theory of Computing (CSE 30151), Spring 2024

Problem types

The questions will be of the following types. (Exercise/problem numbers are from
Sipser; an I means 3rd international edition and a U means 3rd US edition.)

1–2. Two questions will be on topics covered on the midterm exam. See the midterm
study guide for examples, but see below for topics specifically not on the final
exam.

3–4. Two of the questions will cut across multiple topics covered this semester.
They will either be short-answer or at most require one-line proofs.

5. Prove that a language is not context-free (Problems 2.42bcI/2.30bcU).

6. Prove that a TM variant or other formal system is equivalent to a TM (Prob-
lems 3.17–18I/3.10–11U).

7. Prove that a language is undecidable. Examples: Exercise 5.1 (hint: use The-
orem 5.13), Problems 5.29I/5.13U, 5.25–27I/5.9–11U.

8. Prove that a language is NP-complete. Examples (easiest to hardest):

(a) In a directed graph G(V,E), a clique is a set of nodes S ⊂ V such that
there is an edge from every node in S to every other node in S. Prove
that the directed clique problem is NP-complete:

DCLIQUE = {⟨G, k⟩ | G is a directed graph with a clique of size k}.

(b) This question was on an exam at a time when all students had taken Logic
Design: A Boolean circuit with ℓ inputs and 1 output is satisfiable iff there
is a set of inputs that make the output 1. Prove that it is NP-complete
whether a given Boolean circuit using only NAND gates is satisfiable.

(c) HW8 Q3 was originally from a take-home exam.

(d) Problem 7.49–50I/7.22–23U.

Topics not on the exam

• Conversion between DFAs, NFAs, and regular expressions

• Conversion between CFGs and PDAs

• Chomsky normal form (108–110)

• Deterministic context-free languages (§2.4)

• Advanced topics in computability theory (§6)

• §8 and beyond
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Theory of Computing (CSE 30151), Spring 2024

Solutions to selected exercises/problems

Problem 5.25I This language is undecidable by Rice’s Theorem. Alternatively,
suppose that this language is decided by a TM R. We can use R to construct a TM
S that decides ATM as follows:

S = On input ⟨M,w⟩:

1. Construct M ′ = On input x:

(a) Simulate M on w.

(b) If M accepts w and x = 01, accept.

(c) If M accepts w and x ̸= 01, reject.

(d) If M rejects w, reject.

2. Run R on ⟨M ′⟩.

3. If R accepts ⟨M ′⟩, reject.

4. If R rejects ⟨M ′⟩, accept.

If M accepts w, then M ′ recognizes the language {01}, so R rejects, so S accepts.
However, if M rejects w or loops on w, then M ′ recognizes the language ∅, so
R accepts, so S rejects. So S decides ATM. But ATM is undecidable, so this is a
contradiction.

Problem 5.29I Suppose that this language is decided by a TM R. We can use R
to construct a TM S that decides ATM as follows:

S = On input ⟨M,w⟩:

1. Construct M ′ = On input x:

(a) Visit every state except for a special state qspecial. (If desired, one could
go into more detail about how this is done.)

(b) Simulate M on w.

(c) If M accepts w, visit qspecial and halt.

(d) If M rejects w, halt.

2. Run R on ⟨M ′⟩.

3. If R accepts ⟨M ′⟩, reject.

4. If R rejects ⟨M ′⟩, accept.

If M accepts w, then M ′ (on any input) visits all of its states including qspecial, so
R rejects, so S accepts. However, if M rejects w or loops on w, then M ′ does not
visit qspecial (on any input), so R accepts, so S rejects. So S decides ATM. But ATM

is undecidable, so this is a contradiction.
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Theory of Computing (CSE 30151), Spring 2024

Problem 7.49I The certificates for DOUBLE-SAT are pairs of assignments, which
can clearly be checked in linear time. We show that DOUBLE-SAT is NP-hard by
reduction from SAT. Given a formula ϕ with variables x1, . . . , xℓ, let y be a new
variable and let

f(ϕ) = (¬y ∧ ϕ) ∨ (y ∧ ¬x1 ∧ · · · ∧ ¬xℓ)

which can clearly be constructed in linear time. If ϕ has a satisfying assignment ξ,
then we can make two satisfying assignments for f(ϕ): one by taking ξ and also
setting y = 0, and another by setting x1 = · · · = xℓ = 0 and y = 1. Conversely, if
f(ϕ) has two satisfying assignments, at most one of them can have y = 1, so the
other one must satisfy ϕ.

NP-completeness of DCLIQUE The certificates are subsets of V , which can
clearly be checked in quadratic time, just like the undirected clique problem. We
prove this language NP-hard by reduction from the undirected clique problem. Given
an undirected graph G = (V,E) and an integer k > 0, we construct a directed graph
G′ = (V, {(u, v) | (u, v) ∈ E} ∪ {(v, u) | (u, v) ∈ E}), that is, for every edge in G
from u to v, we create edges in G′ from u to v and v to u. This mapping runs in
linear time, and G has a clique of size k if and only if G′ has a clique of size k.

NP-completeness of NAND-SAT The certificates are sets of inputs, which
can clearly be checked in linear time. We prove this language NP-hard by reduction
from SAT. Given a formula ϕ, we can recursively convert it into a circuit using only
NAND gates:

ϕ

ϕ1

ϕ2

ϕ1

ϕ2

¬ϕ ϕ1 ∧ ϕ2 ϕ1 ∨ ϕ2

The circuit has size linear in the size of ϕ, and it computes exactly the same truth
value as ϕ, so it is satisfiable if and only if ϕ is.
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