Homework 2: DFAs and NFAs

Theory of Computing (CSE 30151), Spring 2024
Due 2024-02-02 5pm

Instructions

- Create a PDF file (or files) containing your solutions. You can write your solutions by hand, but please scan them into a PDF.
- Please name your PDF file(s) as follows to ensure that the graders give you credit for all of your work:
- If you're making a complete submission, name it netid-hw2.pdf, where netid is replaced with your NetID.
- If you're submitting some problems now and want to submit other problems later, name it netid-hw2-part123.pdf, where 123 is replaced with the problem numbers you are submitting at this time.
- Submit your PDF file(s) in Canvas.

Problems (10 points each)

1. Divisibility tests. Define, for all $k>0$,
$D_{k}=\left\{w \in\{0, \ldots, 9\}^{*} \mid w\right.$ is the decimal representation of a multiple of $\left.k\right\}$
where ε is considered to represent the number 0 . For example, the strings ε, 0,88 , and 088 all belong to D_{2}, but 99 and 099 do not.
(a) Prove that D_{2} is regular by writing a DFA for D_{2}.
(b) Prove that D_{3} is regular by writing a DFA for D_{3}.
(c) Prove that D_{6} is regular. An explicit DFA is not necessary.
$\left(^{*}\right)$ Optional alternative: You can get full credit for all of the above if you can prove that for any $k>0, D_{k}$ is regular, by describing how to write the formal description of a DFA $M=(Q,\{0, \ldots, 9\}, \delta, s, F)$ in terms of k.
2. Nondeterminism. Consider the following NFA N_{2} (same as in Figure 1.31), which accepts a string iff the third-to-last symbol is a 1 :

(a) Use the subset construction (Theorem 1.39) to convert N_{2} to a DFA M. You may omit curly braces and commas when naming states; for example, instead of $\{1,2,3,4\}$ you may write 1234 . (Hint: the DFA should be equivalent to the one in Figure 1.32.)
(b) Why are the states in Figure 1.32 named $q_{a b c}$ where $a, b, c \in\{0,1\}$?
(c) In Example 1.30, Sipser asks what happens if you modify N_{2} into the following NFA - let's call it N_{2}^{\prime} :

Describe in English what language N_{2}^{\prime} recognizes.
(d) Use the subset construction (Theorem 1.39) to convert N_{2}^{\prime} to a DFA M^{\prime}.
3. Procrustean closure properties. Let Σ be an alphabet, and let $L_{3}=$ \{theory, of, computing\} be an example language.
(a) For any $w=w_{1} w_{2} \cdots w_{n-1} w_{n}$, define

$$
\operatorname{STRETCH}\left(w_{1} w_{2} \cdots w_{n}\right)=w_{1} w_{1} w_{2} w_{2} \cdots w_{n-1} w_{n-1} w_{n} w_{n}
$$

This induces an operation on languages,

$$
\operatorname{STRETCH}(L)=\{\operatorname{STRETCH}(w) \mid w \in L\}
$$

For example,
STRETCH $\left(L_{3}\right)=\{$ tthheeoorryy, ooff, ccoommppuuttiinngg $\}$.
Prove that if L is a regular language, then $\operatorname{STRETCH}(L)$ is also regular.
(b) For any $w=w_{1} w_{2} \cdots w_{n-1} w_{n}$ with $n \geq 2$, define

$$
\operatorname{CHOP}\left(w_{1} w_{2} \cdots w_{n-1} w_{n}\right)=w_{2} \cdots w_{n-1}
$$

This induces an operation on languages,

$$
\mathrm{CHOP}=\{\operatorname{CHOP}(w) \mid w \in L \text { and }|w| \geq 2\}
$$

For example,

$$
\operatorname{CHOP}\left(L_{3}\right)=\{\text { heor }, \varepsilon, \text { omputin }\}
$$

Prove that if L is a regular language, then $\operatorname{CHOP}(L)$ is also regular.

