Homework 2: DFAs and NFAs

Theory of Computing (CSE 30151), Spring 2024

Due 2024-02-02 5pm

Instructions

- Create a PDF file (or files) containing your solutions. You can write your solutions by hand, but please scan them into a PDF.
- Please name your PDF file(s) as follows to ensure that the graders give you credit for all of your work:
 - If you're making a complete submission, name it netid-hw2.pdf, where netid is replaced with your NetID.
 - If you're submitting some problems now and want to submit other problems later, name it *netid*-hw2-part123.pdf, where 123 is replaced with the problem numbers you are submitting at this time.
- Submit your PDF file(s) in Canvas.

Problems (10 points each)

1. Divisibility tests. Define, for all k > 0,

 $D_k = \{w \in \{0, \dots, 9\}^* \mid w \text{ is the decimal representation of a multiple of } k\}$

where ε is considered to represent the number 0. For example, the strings ε , 0, 88, and 088 all belong to D_2 , but 99 and 099 do not.

- (a) Prove that D_2 is regular by writing a DFA for D_2 .
- (b) Prove that D_3 is regular by writing a DFA for D_3 .
- (c) Prove that D_6 is regular. An explicit DFA is not necessary.
- (*) Optional alternative: You can get full credit for all of the above if you can prove that for any k > 0, D_k is regular, by describing how to write the formal description of a DFA $M = (Q, \{0, \ldots, 9\}, \delta, s, F)$ in terms of k.

2. Nondeterminism. Consider the following NFA N_2 (same as in Figure 1.31), which accepts a string iff the third-to-last symbol is a 1:

- (a) Use the subset construction (Theorem 1.39) to convert N_2 to a DFA M. You may omit curly braces and commas when naming states; for example, instead of $\{1, 2, 3, 4\}$ you may write 1234. (Hint: the DFA should be equivalent to the one in Figure 1.32.)
- (b) Why are the states in Figure 1.32 named q_{abc} where $a, b, c \in \{0, 1\}$?
- (c) In Example 1.30, Sipser asks what happens if you modify N_2 into the following NFA let's call it N'_2 :

$$\xrightarrow{0,1} \xrightarrow{1} 2 \xrightarrow{0,1,\varepsilon} 3 \xrightarrow{0,1,\varepsilon} 4$$

Describe in English what language N'_2 recognizes.

- (d) Use the subset construction (Theorem 1.39) to convert N'_2 to a DFA M'.
- 3. Procrustean closure properties. Let Σ be an alphabet, and let $L_3 = \{\text{theory}, \text{of}, \text{computing}\}$ be an example language.
 - (a) For any $w = w_1 w_2 \cdots w_{n-1} w_n$, define

 $STRETCH(w_1w_2\cdots w_n) = w_1w_1w_2w_2\cdots w_{n-1}w_nw_n.$

This induces an operation on languages,

 $STRETCH(L) = {STRETCH(w) | w \in L}.$

For example,

 $STRETCH(L_3) = \{thheeorryy, ooff, ccoommpputtiinngg\}.$

Prove that if L is a regular language, then STRETCH(L) is also regular.

(b) For any $w = w_1 w_2 \cdots w_{n-1} w_n$ with $n \ge 2$, define

 $CHOP(w_1w_2\cdots w_{n-1}w_n)=w_2\cdots w_{n-1}.$

This induces an operation on languages,

 $CHOP = \{CHOP(w) \mid w \in L \text{ and } |w| \ge 2\}.$

For example,

$$CHOP(L_3) = \{\texttt{heor}, \varepsilon, \texttt{omputin}\}.$$

Prove that if L is a regular language, then CHOP(L) is also regular.