Homework 3: Regular expressions and non-regular languages

Theory of Computing (CSE 30151), Spring 2024
Due: Thursday 2024-02-15 5pm

Instructions

- Create a PDF file (or files) containing your solutions. You can write your solutions by hand, but please scan them into a PDF.
- Please name your PDF file(s) as follows to ensure that the graders give you credit for all of your work:
- If you're making a complete submission, name it netid-hw3.pdf, where netid is replaced with your NetID.
- If you're submitting some problems now and want to submit other problems later, name it netid-hw3-part123.pdf, where 123 is replaced with the problem number(s) you are submitting at this time.
- Submit your PDF file(s) in Canvas.

Problems (10 points each)

1. Regular expressions vs. Unix regular expressions. Regular expressions and Unix regular expressions have some superficial differences, but also some deeper ones that affect the class of languages recognized.
(a) Unix regular expressions have quantifiers: if α is a regular expression, $\alpha^{\{m, n\}}$ is a regular expression that matches at least m and no more than n strings that match α. More formally, it matches all strings $w^{(1)} \cdots w^{(l)}$ where $m \leq l \leq n$, and for all i such that $1 \leq i \leq l, w^{(i)}$ matches α. Prove that for any regular expression with quantifiers, there is an equivalent regular expression without quantifiers.
(b) Unix regular expressions have backreferences: for an explanation, please see http://www.regular-expressions.info/backref.html. Give an example of a Unix regular expression that uses backreferences to describe
a nonregular language, and prove that this language is not regular. We want you to get practice writing a non-regularity proof, so although you may use Examples 1.73-77, do not simply cite one of them; please write out a full proof.
2. Binary addition. This problem is about two ways of representating addition of binary natural numbers. We consider 0 to be a natural number. We allow binary representations of natural numbers to have leading 0 s , and we consider ε to be a binary representation of 0 . When adding numbers, we do not allow overflow, so, for example, $1111+0001=0000$ is false.
(a) [Problem 1.32] Let

$$
\Sigma_{3}=\left\{\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right\},
$$

that is, an alphabet of eight symbols, each of which is a column of three bits. Thus, a string over Σ_{3} gives three rows of bits. Show that the following is regular:

$$
B=\left\{w \in \Sigma_{3}^{*} \mid \text { the bottom row of } w \text { is the sum of the top two rows }\right\} .
$$

Hint: Since it's easier to think about addition from right to left, design an automaton for B^{R} first, then convert it into an automaton for B.
(b) [Problem 1.53] Let $\Sigma=\{0,1,+,=\}$, and prove that the following is not regular:

$$
A D D=\left\{x=y+z \mid x, y, z \in\{0,1\}^{*} \text { and } x=y+z \text { is true }\right\} .
$$

3. Similar but different [Problem 1.49].
(a) Let $B=\left\{1^{k} w \mid w \in\{0,1\}^{*}\right.$ and w contains at least $k 1 \mathrm{~s}$, for $\left.k \geq 1\right\}$. Show that B is a regular language. Hint: Try out some strings to see what does and doesn't belong to B, in order to find another simpler way of thinking about B.
(b) Let $C=\left\{1^{k} w \mid w \in\{0,1\}^{*}\right.$ and w contains at most $k 1$ s, for $\left.k \geq 1\right\}$. Prove that C is not a regular language.
