Homework 4: Context-free languages

Theory of Computing (CSE 30151), Spring 2024

Due: 2024-02-23 5pm

Instructions

- Create a PDF file (or files) containing your solutions. You can write your solutions by hand, but please scan them into a PDF.
- Please name your PDF file(s) as follows to ensure that the graders give you credit for all of your work:
 - If you're making a complete submission, name it netid-hw4.pdf, where netid is replaced with your NetID.
 - If you're submitting some problems now and want to submit other problems later, name it netid-hw4-part123.pdf, where 123 is replaced with the problem number(s) you are submitting at this time.
- Submit your PDF file(s) in Canvas.

Problems (10 points each)

1. **Arithmetic expressions.** Consider the grammar G_4 (page 105) for arithmetic expressions, with start symbol E:

$$\begin{split} E &\to E + T \mid T \\ T &\to T * F \mid F \\ F &\to (E) \mid \mathbf{a} \mid \mathbf{b} \mid \mathbf{c} \end{split}$$

(a) [cf. Exercise 2.1] Give derivations for the following strings. You may write them either as a sequence of rewrites $(E \Rightarrow \cdots)$ or as a tree.

$$i. a+b+c$$

ii.
$$a*b+c$$

iii.
$$a*(b+c)$$

- (b) Modify G_4 to allow an exponentiation operator \uparrow .
 - It should have higher precedence than multiplication; that is, in the derivation of the string $a * b \uparrow c$, there should be a nonterminal that rewrites to $b \uparrow c$, and there should not be a nonterminal that rewrites to a * b.
 - It should be (unlike * and +) right-associative; that is, in the derivation of the string a ↑ b ↑ c, there should be a nonterminal that rewrites to b ↑ c, and there should not be a nonterminal that rewrites to a ↑ b.
- 2. Write both a PDA and a CFG for the language (page 80):

$$C = \{w \in \{0,1\}^* \mid w \text{ has an equal number of 0s and } 1s\}.$$

Please include a brief explanation of why they work. (If you convert a PDA to a CFG or vice versa, that suffices as an explanation.)

3. [Exercise 2.6b] Write both a PDA and a CFG for the language

$$L_3 = \overline{\{0^n 1^n \mid n \ge 0\}}.$$

For example, 000111 $\notin L_3$. Please include a brief explanation of why they work. (If you convert a PDA to a CFG or vice versa, that suffices as an explanation.)

Hint: First prove that this is equal to $\{0^m 1^n \mid m \neq n\} \cup \overline{0^* 1^*}$.