
Homework 6: Turing Machine Variants

Theory of Computing (CSE 30151), Spring 2024

Due: Thursday 2023-03-28 5pm

Instructions

• Create a PDF file (or files) containing your solutions. You can write your
solutions by hand, but please scan them into a PDF.

• Please name your PDF file(s) as follows to ensure that the graders give you
credit for all of your work:

– If you’re making a complete submission, name it netid -hw6.pdf, where
netid is replaced with your NetID.

– If you’re submitting some problems now and want to submit other prob-
lems later, name it netid -hw6-part123.pdf, where 123 is replaced with
the problem number(s) you are submitting at this time.

• Submit your PDF file(s) in Canvas.

Problems (10 points each)

1. Doubly infinite tapes [Problem 3.11]. A Turing machine with a doubly
infinite tape is like a TM as defined in the book, but with a tape that extends
infinitely in both directions (not just to the right). Initially, the head is at the
first symbol of the input string, as usual, but there are infinitely many blanks
to the left. Show how, given a TM with doubly infinite tape, to construct an
equivalent standard TM. An implementation description in the style of
Proof 3.13 is fine, and it’s also fine to use any results proved in the book or in
class.

2. Two-stack PDAs. A two-stack pushdown automaton (2PDA) is a pushdown
automaton with two stacks. It has a start state and zero or more accept states
like a standard PDA, and its transitions look like this:

q r
a, x1, x2 → y1, y2

1

Theory of Computing (CSE 30151), Spring 2024 Homework 6

This means, if the machine is in state q, the next input symbol is a, the top
of the first stack is x1, and the top of the second stack is x2, then consume a,
pop x1 from the first stack, pop x2 from the second stack, push y1 onto the
first stack, push y2 onto the second stack, and go to state r.

Show that any Turing machineM can be converted into an equivalent 2PDA P .
Use formal descriptions of both M and P . Be sure to include in your construc-
tion the following:

• For each state q of M , you should create a state q in P .

• If s is the start state of M , what should you do?

• If qaccept is the accept state of M , what should you do?

• If qreject is the reject state of M , what should you do?

• For each transition of M that looks like this, what should you do?

q r
a → b,R

• For each transition of M that looks like this, what should you do?

q r
a → b,L

3. Brain fun. This problem is about a programming language known as P ′′ in
polite company.1 It was invented in 1964, in one of the foundational papers
about structured programming, to show that we don’t need goto.

Let Γ = {a0, . . . , an−1} and Σ ⊆ Γ \ {a0}. A P ′′ program works on a singly-
infinite tape like a Turing machine. Each cell contains a symbol from Γ. The
tape is initialized to an input string over Σ, followed by infinitely many a0’s.
The head starts at the leftmost cell. Then a sequence of commands is executed
sequentially. The possible commands are as follows:

< Move the head to the left if possible; do nothing otherwise.
> Move the head to the right.
+ Increment the symbol under the head: a0 becomes a1, a1

becomes a2, and so on; an−1 becomes a0.
- Decrement the symbol under the head: an−1 becomes an−2,

an−2 becomes an−3, and so on; a0 becomes an−1.
[cmds] Like a while loop: while the symbol under the head is not

a0 do cmds. These loops can be nested.

1https://bit.ly/pprimeprime

2

Theory of Computing (CSE 30151), Spring 2024 Homework 6

When the program finishes, if the symbol under the head is not a0, the program
accepts the input string; otherwise it rejects.

For example, the following program (with Σ = {a1, . . . , an−1}) recognizes the
language {aiajw | i+ j ̸= n,w ∈ Σ∗}:

[->+<]>

That’s equivalent to the following pseudocode:

while tape[head] ̸= 0 do
tape[head] −= 1 (mod n)
head += 1
tape[head] += 1 (mod n)
head −= 1

head += 1
return tape[head] ̸= 0

Choose one of the following problems. If you do more than one, you’ll get
credit for the best one.

(a) Describe how to compile any P ′′ program P into the formal description
of a Turing machine MP equivalent to P . The input to MP would be a
string w ∈ Σ∗, and it should accept iff P accepts w. It should be a
standard single-tape TM, but you can use S (“stay”) actions.

(b) Give an implementation description of a multitape Turing machine
that can interpret any P ′′ program. The input would be a string P#w
where P is a P ′′ program and w is an input string, and it should accept
iff P accepts w.

(c) Much harder: Describe how to translate any Turing machine M into a
P ′′ program PM equivalent to M .

3

